Original Research

Outcomes of Children With Complex Regional Pain Syndrome After Intensive Inpatient Rehabilitation

Valerie Brooke, MD, Steven Janselewitz, MD

Objective: To examine the effectiveness of an inpatient treatment program on eliminating pain and increasing function for children with complex regional pain syndrome. **Design:** A retrospective chart review and follow-up telephone survey.

Setting: A tertiary care hospital.

Patients: Retrospective chart review of 32 children admitted for treatment of complex regional pain syndrome. Nineteen completed the telephone survey.

Intervention: Intensive inpatient physical and occupation therapy in conjunction with psychological counseling, art therapy, recreational therapy, and child life specialists who focused on improving physical function and conditioning, stress management, and the development of self-efficacy related to pain and stress.

Main Outcome Measurements: Resolution of pain and restoration of full function by patient or family report.

Results: All the children had failed various prior treatment approaches: 34% had resolution at the time of discharge; 78% of admissions and 89% of those with follow-up had eventual resolution of pain; and 95% had full restoration of physical function at a median time from start of treatment of 2 months. Seven had recurrence and 5 were able to resolve the recurrence without further intervention from the medical community.

Conclusions: Intensive inpatient rehabilitation is effective for children with complex regional pain syndrome. Additional studies are necessary to compare this treatment with other approaches.

PM R 2012;xx:xxx

INTRODUCTION

Children with pain out of proportion to any initiating injury, or amplified pain, can pose both a diagnostic and a therapeutic challenge for physicians. Some children have autonomic signs such as swelling or changes in skin temperature or color, which lead to a diagnosis of complex regional pain syndrome type 1 (CRPS-1), formerly referred to as reflex sympathetic dystrophy (RSD) [1]. Other physicians have also used the term reflex neurovascular dystrophy (RND) [2-7]. Pain conditions in children without autonomic signs have been referred to as diffuse idiopathic pain syndrome, localized idiopathic pain syndrome, psychogenic pain, psychosomatic pain, pseudodystrophy, growing pains, primary fibromyalgia syndrome, or fibromyalgia [7-15].

Many different treatment approaches have been attempted for these pain conditions in children, including nonsteroidal anti-inflammatory drugs [16-20], steroids [16,19,21-23], prostacyclin analog [12], pamidronate infusion [24], splinting or immobilization [18,20,25,26], transcutaneous electrical nerve stimulation (TENS) [17-19,26-30], sympathetic nerve blocks [6,19,22,25,26,30,31], and spinal cord stimulation [14], all with varying degrees of pain resolution and functional restoration. The most commonly used treatment for children with CRPS-1 is physical therapy (PT). A few studies show the effects of a single treatment modality for the treatment of these pain conditions. Frequently, multiple modalities are used simultaneously, which make it difficult to determine the effectiveness of any single treatment.

The few previous studies of children treated primarily with inpatient or outpatient therapy show rates of long-term full resolution that ranged from 60% to 100% [2,32-34].

V.B. Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA

Disclosure: nothing to disclose

S.J. Pediatric Development and Rehabilitation, Randall Children's Hospital Legacy Emanuel, 2801 N Gantenbein Ave, Portland, OR 97227. Address correspondence to: S.J.; e-mail: sjansele@lhs.org Disclosure: nothing to disclose

Disclosure Key can be found on the Table of Contents and at www.pmrjournal.org

Submitted for publication June 15, 2011; accepted January 27, 2012.

Bernstein et al [2] reviewed charts of 23 children with RSD who had been treated with intensive outpatient PT of 2 to 3 PT sessions per day. Twelve patients had resolution of their pain, and 20 patients had full functional restoration after a mean follow-up time of 2.4 years. Blau [32] indicated full resolution of pain and function in 10 children with RSD after PT, with no patient spending more than 2 days in the hospital. The mean follow-up time was 1.1 years.

Sherry et al [33] studied children with CRPS-1 with either home-based exercises or inpatient therapy. Outcomes after a mean of 5.25 years showed pain resolution in 88% and functional restoration in 98%. Sherry did not elaborate on how many patients received inpatient versus outpatient therapy and drew no conclusion as to whether one was better than the other. A later study by Sherry [10] also included children with more diffuse musculoskeletal pain as well as patients with CRPS-1. Treatment consisted of an average of 2 weeks of intensive inpatient or outpatient PT, followed by a 1-hour daily home program performed for another 2-8 weeks. He reported that 80% of children had no pain and were fully functional after 1 month of treatment, with 15% having some pain but full function, and 5% with no improvement at all. At the 5-year follow-up, 90% of patients were free of pain and fully functional.

Lee et al [34] provided treatment of 1-hour weekly outpatient PT with cognitive behavioral therapy for 6 weeks or 3 hours of outpatient PT per week with cognitive behavioral therapy for 6 weeks. At follow-up, both groups had improvements in pain and function, with no significant difference between the groups, which suggests that more hours of PT may not improve outcomes. All the patients contacted at a mean follow-up of 2.5 years had resolution of their pain and restoration of function.

Although some of these studies used inpatient treatment, the studies did not look at this treatment approach exclusively. The aim of our study was specifically to evaluate the outcome of an inpatient rehabilitation treatment program of intensive rehabilitation therapies followed by a home program for children with complex regional pain syndrome.

METHODS

After institutional review board approval was obtained, a retrospective chart review included 33 admissions for inpatient treatment of complex regional pain syndrome at a tertiary care hospital between February 2007 and July 2010. Exclusion criteria limited data collection to first-time admissions, which eliminated 1 repeat admission for a total of 32 unique admissions and subjects for this study.

The diagnosis of CRPS-1 was made by 1 of 3 pediatric physiatrists working at the clinic and hospital with experience in diagnosing and treating children with CRPS-1. The diagnosis was based on symptoms of pain, focal or diffuse, hyperesthesia or allodynia, swelling, changes in skin color or temperature, decreased mobility or function, effects of prior treatment approaches, and lack of other diagnoses. These signs and symptoms form the basis for the diagnosis of pediatric CRPS-1 as suggested by Stanton et al [20], which include pain out of proportion to the inciting event combined with evidence of neurovascular dysfunction as manifested by dependent edema, dependent rubor, skin mottling, hypersensitivity to light touch, skin temperature changes, altered perspiration, and/or changes in patterns of hair growth. Patients were admitted for treatment based on diagnosis, patient and family willingness to enter treatment, and approval from insurance.

Admission and discharge data for pain and functional status were obtained by chart review. Pain was rated on a 0-10 numerical rating scale, with 0 being no pain and 10 being the worst possible pain. Data on long-term outcomes were obtained by a follow-up telephone survey completed 6 months or more after discharge. The telephone questionnaire included questions regarding the number of recurrences, resolution methods for any recurrences, any further treatment provided after discharge, and pain and functional levels on the day of the telephone interview. The parents were interviewed, unless the child was older than age 18 years at the time of the telephone interview, in which case the patient was interviewed.

Treatment

Inpatient lengths of stay varied depending upon the needs of the child and response to treatment, but all children participated in 5 hours of therapy per day, 5 days per week. The 3 hours of daily PT included timed, high-intensity aerobic activities, lower and upper extremity strengthening, core strengthening, stretching or yoga, and balance or coordination activities. Aerobic activities included the treadmill, stationary bike, step-ups on a bench, sprints, and various nontypical mobility activities. The patients were required to beat the previous day's timed aerobic activities by 1 second before moving to the next activity. Daily occupational therapy included 2 hours of exercises such as push-ups, sit-ups, plank exercises, or using an upper extremity bike. Desensitization exercises, such as brushing, toweling, lotion rubbing, or fluidotherapy, were performed on the affected extremity for 15 minutes twice a day. Also, during the weekdays, the patients performed school activities for 30 minutes, had psychological counseling that taught stress management and pain coping skills, and had 30 minutes of self-directed PT on their own in the evenings. Additional services included art therapy, recreational therapy, and child life therapy. A few children were referred for a psychiatric consultation. Weekend therapy included 2.5 hours of PT and occupational therapy on Saturday, plus 45 minutes of self-directed therapy on both weekend days. Family visitation was limited. Each patient was given an individualized home therapy program

ARTICLE IN PRESS

Girls, n (%)	26 (81)
Boys, n (%)	6 (19)
Mean age (range), y	14.3 (8-18)
Mean duration of symptoms before	9 (0.5-48)
treatment (range), mo	
History of injury or trauma, n (%)	17 (53)
History of psychological diagnosis, n (%)	14 (44)
Perfectionist or overachiever personality	16 (50)
traits, n (%)	

after discharge, with the expectation to perform 45 minutes each weekday, and 90 minutes on each weekend day, until full functional activity was established.

Either before or shortly after admission, the patients were weaned off any medications being taken for CRPS-1. The patients were allowed to take acetaminophen or ibuprofen for headaches or soreness. The patients were discharged once they had reached their best performance on the above activities and demonstrated an ability to perform their home program.

RESULTS

Patient characteristics are depicted in Table 1. The mental health diagnoses at admission included depression (6 children), anxiety (9), attention-deficit/hyperactivity disorder (3), somatization or conversion disorder (2), eating disorder (1), and posttraumatic stress disorder (2). An additional 4 children were seen by a psychiatrist during their inpatient treatment and were diagnosed with general anxiety disorder (3), dysthymia (2), and depression (2). School absences were recorded for 28 children (88%), which ranged from missing several days due to the pain, to being home schooled secondary to pain and immobility. Five children (16%) had a previous diagnosis of chronic headaches or migraines.

Signs and symptoms on the day of admission, location of pain, and previous treatments are listed in Tables 2, 3, and 4, respectively. All the children had at least 1 prior treatment approach, although typically more, Functionally, 8 children (25%) required the use of crutches for ambulation, and 4 (13%) used a wheelchair, and 3 (9%) were non–weightbearing secondary to pain. The admission median pain rating was 8.5 (range, 5-10). The average length of stay was 19 days, with a range of 8-32 days.

Table 2.	Signs and	symptoms	on da	y of	admission
----------	-----------	----------	-------	------	-----------

	n (%)
Pain	32 (100)
Hyperesthesia	27 (84)
Skin color changes	15 (47)
Temperature changes: hot or cold	13 (40)
Swelling	5 (16)

Table 3. Pain location

	n (%)
Lower extremity only involved	14 (44)
Neck, back, abdomen, or torso involvement	10 (31)
Upper extremity only involved	5 (16)
Both upper and lower extremity involved	3 (9)

All the children completed inpatient treatment. At discharge, the pain rating dropped to a median of 2 (range, 0-10). Eleven children (34%) had complete resolution of their pain at discharge (Figure 1). No child required the use of crutches or wheelchairs, although 5 (16%) were unable to participate in physical or sports activities. One of these 5 had limitations secondary to focal atrophy, not due to pain, and one had limitations due to hemiplegic cerebral palsy. Nineteen families (59%) were successfully contacted for the follow-up telephone survey. The remaining 13 families were lost to follow-up due to disconnected telephone numbers (3), failure to answer telephone calls (6), or nonresponse to messages (4). The average time to survey follow-up was 21 months, with a range of 6-43 months.

Of the 21 children who continued to have pain on discharge, 14 (67%) had resolution of their pain at a median of 2 months (range, 1-11 months) (Figure 1). Four who had pain on discharge were lost to follow-up. Of the 19 children who participated in the follow-up telephone survey, 3 never had pain resolution, with 2 reported a current pain level of 2, and one reported a level of 6. These ratings were less than their admission ratings, with reductions of 7, 3, and 2. Overall, 25 children had resolution of their pain. This is 78% of admissions and 89% of those with known outcomes.

Relapses occurred in 7 children (37%), including 1 relapse, or flare, in a patient whose pain improved but did not resolve after treatment. Six patients achieved full resolution of the recurrence. Five achieved resolution with home-based exercises learned during their inpatient treatment. One patient required additional outpatient therapy. The child with the flare was admitted for a second intensive therapy program, which resulted in reduction of the pain but still failed

Table 4. Previous trea	tments
------------------------	--------

	n (%)
Nonsteroidal anti-inflammatory drugs	21 (66)
Outpatient physical therapy	20 (63)
Opiates	17 (53)
Antidepressants	16 (50)
Gabapentin	13 (41)
Benzodiazepines	10 (31)
Cast or splint of extremity	5 (16)
Muscle relaxants	5 (16)
Oral steroids	3 (9)
Local injections	2 (6)
Sympathetic nerve block	2 (6)
Epidural injection	1 (3)

Figure 1. Resolution of pain over time. Bars indicate number of patients with unresolved pain at each time interval.

to achieve resolution. Although counseling was recommended for nearly all the children after discharge, only 5 participated, all of whom had eventual resolution of their pain.

Three children had additional treatment for their CRPS-1 after discharge. One child began with a personal trainer after discharge as well as treatment by a naturopath and an acupuncturist, with eventual full resolution of pain. Two children saw other allopathic physicians after discharge for their pain. One child had full resolution of pain 11 months after discharge and after seeing a pediatric rheumatologist who used the same therapeutic techniques as in this study. The other child saw a pain center physician, attempted biofeedback with no resolution of pain, received a diagnosis of nonepileptic seizures, and never had pain resolution. One child continued with outpatient PT after discharge for focal muscle atrophy. Of the 5 children who reported functional limitations on the day of discharge, 3 children continued to report physical activity limitations on the day of the follow-up survey. However, one was due to hemiplegic cerebral palsy, one to new knee instability, and one to CRPS-1.

DISCUSSION

CRPS-1 occurs in both the adult and pediatric populations, but it differs in several respects. Pediatric CRPS has a 6-7:1 female:male ratio, whereas adults have a female predominance of 2-4:1 [14,35]. Children also tend to have symptoms in the lower extremities 3-6 times more frequently than in the upper limbs, whereas adults more frequently have upper extremity involvement [14,35]. In addition, children tend to have less-pronounced neurologic or sympathetic symptoms [35]. In our experience, children have not developed nail or hair growth changes. Adults have quite variable rates of recovery and frequently have long-term disability, whereas children are more likely to have complete resolution.

Many of our pediatric patient characteristics follow the pattern of previous reports and studies of children with complex regional pain syndrome, including the female predominance of patients [2,4-6,13,15,16,19,20,23,31-34,36-38], lower extremity involvement greater than upper extremity [2,5,8,13,15,18-20,23,33,34,36,37,39], and not always having an inciting event or trauma [2,3,5,6,15-17,20,23, 31,33,34,36,38,39]. Previous reports showed an average age of 10.7 years at onset of CRPS-1 symptoms, whereas others reported median ages of 12, 13, or 14 years [4,23,33,38]. Previous reviews also reported an average duration of CRPS-1 before treatment of 6.3 months, or medians of 2, 4, 5, and 12 months [4,17,20,33,38]. In our sample population, the average age of onset of CRPS-1 was 13.3 years, and the median number of months before inpatient treatment was 9 months, both of which were higher than most previous published reports. The higher duration of symptoms before inpatient treatment could be explained by a delay in diagnosis, attempts at other treatments, or a delay in getting approval for inpatient treatment.

Our pain resolution rate is similar to prior studies on outpatient and inpatient therapy intervention, which ranged from 60%-100% [2,32-34]. Our high functional restoration rate is also similar to these studies but lacks a validated and thorough measure. We found a median time to resolution of pain of 2 months (range, 1-11 months) (Figure 1). For studies that reported time to resolution, the range was 2 weeks to 2.5 years [16,17,20,21,25-29,31,36,40,41,42].

Recurrences of CRPS-1 symptoms occurred in 7 of the 19 children contacted for follow-up in this study. This percentage of recurrences (37%) is not uncommon, and falls within a similar percentage range reported in previous studies [2,3,5,6,10,17,20,26,30,33,36-38,41,42]. Recurrences were found to occur either in the original area or the limb, or occasionally occurred in a new location. Regardless, the skills learned in inpatient rehabilitation were effective in resolving pain and dysfunction in 5 recurrences and kept these children from having to seek out further medical interventions.

Many researchers in previous studies have suggested that there is a strong psychological association in children who have complex regional pain syndrome [2,4,20,23,30,32,37-39]. Despite this association, causality cannot be substantiated, for several reasons. As noted by Bruehl and Carlson [43] and Lynch [44], the previous studies were not prospective trials, and they lacked control groups, had small sample sizes, and did not always have valid Diagnostic and Statistical relied instead on statements of personality characteristics. Our study found the same associations but also had the same limitations. It also was difficult to make any assumptions regarding the relationship of mental health to complex regional pain syndrome, because depression and anxiety can occur as a result of chronic pain. Sherry et al [38] notes this in their reviews, with understanding that a preceding depression can lead to chronic pain or that the distress of a chronic pain syndrome can lead to depression. The high prevalence

of psychological diagnoses in children with CRPS-1 require skilled professionals to treat the mental issues at the same time the therapy is working to decrease pain and increase function.

Three children in our study with known outcomes did not resolve their pain, which limits the ability to compare them with the children who did resolve their pain. However, it is interesting to note the characteristics of the 3 children who seemed to have failed our inpatient treatment program. First, these children had unusual pain distributions. The first one with diffuse pain covering the face, chest, back, and bilateral legs, as well as complaints of chronic fatigue. She had no initiating injury, no known history of a psychiatric diagnosis but did have a history of hyperflexibility. At discharge, this child reported a change in pain rating from 5 to 2, and, at follow-up, a pain rating of 2, which suggests at least an initial response to treatment. At follow-up, she also continued to report functional limitations, including an inability to sit or move for long periods of time.

The second child had right upper quadrant abdominal pain after a resection of a local nodular hepatic hyperplasia. In addition, this child also had autonomic changes in her feet, as well as numbness on her abdomen. She went on to receive treatment at another clinic and was subsequently found to have nonepileptic seizures. Unlike the first patient, she did not report any immediate decrease in her pain; she reported both an admission and discharge pain rating of 8. At longterm follow-up, her pain rating had decreased to 6, although she continued to miss school and participated in very limited physical activities. The third child had back and bilateral posterior leg pain with significant headaches. His back and leg pain, but not his headaches, improved after treatment, with a reported change from 9 to 2. However, his pain did not resolve, and he was readmitted for a second inpatient stay after injury resulted in worsened CRPS-1. His pain improved after the second stay but did not fully resolve.

The limitations of our study are similar to those in earlier studies on children with CRPS-1. The number of study participants is small; there are no control groups for comparison; and not all children participated in the follow-up survey. Even though our rates of resolution of pain and restoration of full function are encouraging, further study is required to determine whether outpatient therapy is more or less effective than intensive inpatient therapy or other treatment approaches.

CONCLUSION

The results of our study suggest that intensive inpatient rehabilitation, which consists of physical, occupational, and psychological therapy, without the use of other medical intervention and followed by a home program, is effective for children with complex regional pain syndrome even when other approaches have failed. Additional studies are necessary to compare this treatment with other approaches.

UNCITED REFERENCES

This section consists of references that are included in the reference list but are not cited in the article text. Please either cite each of these references in the text or, alternatively, delete it from the reference list. If you do not provide further instruction for this reference, we will retain it in its current form and publish it as an "un-cited reference" with your article [40].

ACKNOWLEDGMENTS

We thank Dr Janice Cockrell and Dr Mark Shih for providing valuable input into the creation of this article, and we thank our rehabilitation team for the excellent care of these patients.

REFERENCES

- Stanton-Hicks M, Janig W, Hassenbusch S, Haddox JD, Boas R, Wilson P. Reflex sympathetic dystrophy: Changing concepts and taxonomy. Pain 1995;63:127-33.
- Bernstein BH, Singsen BH, Kent JT, et al. Reflex neurovascular dystrophy in childhood. J Pediatr 1978;93:211-5.
- Rush PJ, Wilmot D, Saunders N, Gladman D, Shore A. Severe reflex neurovascular dystrophy in childhood. Arthritis Rheum 1985;28: 952-6.
- Sherry DD, Weisman R. Psychologic aspects of childhood reflex neurovascular dystrophy. Pediatrics 1988;81:572-8.
- Aftimos S. Reflex neurovascular dystrophy in children. N Z Med J 1986;99:761-3.
- **6.** Olsson GL, Arner S, Hirsch G. Reflex sympathetic dystrophy in children. Adv Pain Res Ther 1990;15:323-31.
- Sherry DD. Pain syndromes. In: Miller JJ, ed. Adolescent Rheumatology. London: Martin Dunitz; 1998, 197-227.
- **8.** Malleson PN, al-Matar M, Petty RE. Idiopathic musculoskeletal pain syndromes in children. J Rheumatol 1992;19:1786-9.
- **9.** Cassidy JT. Progress in diagnosing and understanding chronic pain syndromes in children. Curr Opin Rheumatol 1994;6:544-6.
- **10.** Sherry DD. An overview of amplified musculoskeletal pain syndromes. J Rheumatol Suppl 2000;58:44-8.
- **11.** Sherry DD. Diagnosis and treatment of amplified musculoskeletal pain in children. Clin Exp Rheumatol 2001;19:617-20.
- Malleson P, Clinch J. Pain syndromes in children. Curr Opin Rheumatol 2003;15:572-80.
- Dadure C, Motais F, Ricard C, Raux O, Troncin R, Capdevila X. Continuous peripheral nerve blocks at home for treatment of recurrent complex regional pain syndrome I in children. Anesthesiology 2005; 102:387-91.
- **14.** Berde CB, Lebel A. Complex regional pain syndromes in children and adolescents. Anesthesiology 2005;102:252-5.
- **15.** Olsson GL, Meyerson BA, Linderoth B. Spinal cord stimulation in adolescents with complex regional pain syndrome type I (CRPS-I). Eur J Pain 2008;12:53-9.
- Ruggeri SB, Athreya BH, Doughty R, Gregg JR, Das MM. Reflex sympathetic dystrophy in children. Clin Orthop Relat Res 1982;163:225-30.
- Kesler RW, Saulsbury FT, Miller LT, Rowlingson JC. Reflex sympathetic dystrophy in children: Treatment with transcutaneous electric nerve stimulation. Pediatrics 1988;82:728-32.
- **18.** Wesdock KA, Stanton RP, Singsen BH. Reflex sympathetic dystrophy in children. A physical therapy approach. Arthritis Care Res 1991;4:32-8.

- 19. Wilder RT, Berde CB, Wolohan M, Vieyra MA, Masek BJ, Micheli LJ. Reflex sympathetic dystrophy in children. Clinical characteristics and follow-up of seventy patients. J Bone Joint Surg Am 1992;74:910-9.
- 20. Stanton RP. Malcolm JR. Wesdock KA. Singsen BH. Reflex sympathetic dystrophy in children: An orthopedic perspective. Orthopedics 1993; 16:773-9; discussion 779-80.
- **21.** Kozin F, Haughton V, Ryan L. The reflex sympathetic dystrophy in a child. J Pediatr 1977;90:417-9.
- **22.** Buchta RM. Reflex sympathetic dystrophy in a 14-year-old female. J Adolesc Health Care 1983;4:121-2.
- 23. Silber TJ, Majd M. Reflex sympathetic dystrophy syndrome in children and adolescents. Report of 18 cases and review of the literature. Am J Dis Child 1988;142:1325-30.
- 24. Brown SC, Jeavons M, Stinson J. Effectiveness of pamidronate for treating intractable chronic neuropathic pain: Case report of two adolescents. Clin J Pain 2005;21:549-52.
- Carron H, McCue F. Reflex sympathetic dystrophy in a ten year old. Southern Med J 1972;65:631-2.
- **26.** Fermaglich DR. Reflex sympathetic dystrophy in children. Pediatrics 1977;60:881-3.
- **27.** Stilz RJ, Carron H, Sanders DB. Reflex sympathetic dystrophy in a 6-year-old: Successful treatment by transcutaneous nerve stimulation. Anesth Analg 1977;56:438-43.
- 28. Richlin DM, Carron H, Rowlingson JC, Sussman MD, Baugher WH, Goldner RD. Reflex sympathetic dystrophy: Successful treatment by transcutaneous nerve stimulation. J Pediatr 1978;93:84-6.
- **29.** Forster RS, Fu FH. Reflex sympathetic dystrophy in children. A case report and review of literature. Orthopedics 1985;8:475-7.
- **30.** Ashwal S, Tomasi L, Neumann M, Schneider S. Reflex sympathetic dystrophy syndrome in children. Pediatr Neurol 1988;4:38-42.
- Lloyd-Thomas AR, Lauder G. Lesson of the week. Reflex sympathetic dystrophy in children. BMJ 1995;310:1648-9.

- Blau EB. Reflex sympathetic dystrophy syndrome in children. Wisconsin Med J 1984;83:34-5.
- 33. Sherry DD, Wallace CA, Kelley C, Kidder M, Sapp L. Short- and long-term outcomes of children with complex regional pain syndrome type I treated with exercise therapy. Clin J Pain 1999;15:218-23.
- **34.** Lee BH, Scharff L, Sethna NF, et al. Physical therapy and cognitivebehavioral treatment for complex regional pain syndromes. J Pediatr 2002;141:135-40.
- **35.** Tan EC, Zijlstra B, Essink ML, Goris RJ, Severijnen RS. Complex regional pain syndrome type I in children. Acta Paediatr 2008;97: 875-9.
- **36.** Dietz FR, Mathews KD, Montgomery WJ. Reflex sympathetic dystrophy in children. Clin Orthop Relat Res 1990;258:225-31.
- **37.** Petje G, Radler C, Aigner N, et al. Treatment of reflex sympathetic dystrophy in children using a prostacyclin analog: Preliminary results. Clin Orthop Relat Res 2005;433:178-82.
- Sherry DD, McGuire T, Mellins E, Salmonson K, Wallace CA, Nepom B. Psychosomatic musculoskeletal pain in childhood: Clinical and psychological analyses of 100 children. Pediatrics 1991;88:1093-9.
- **39.** Cimaz R, Matucci-Cerinic M, Zulian F, Falcini F. Reflex sympathetic dystrophy in children. J Child Neurol 1999;14:363-7.
- **40.** Petje G, Aigner N. Reflex sympathetic dystrophy in children. Arch Orthop Trauma Surg 2000;120:465-6.
- **41.** Hood-White R, Gainor J. Reflex sympathetic dystrophy in an 8-yearold: Successful treatment by physical therapy. Orthopedics 1997;20: 73-4.
- **42.** Tong HC, Nelson VS. Recurrent and migratory reflex sympathetic dystrophy in children. Pediatr Rehabil 2000;4:87-9.
- **43.** Bruehl S, Carlson CR. Predisposing psychological factors in the development of reflex sympathetic dystrophy. A review of the empirical evidence. Clin J Pain 1992;8:287-99.
- **44.** Lynch ME. Psychological aspects of reflex sympathetic dystrophy: A review of the adult and paediatric literature. Pain 1992;49:337-47.