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Abstract: NFkB is involved in several pathogenic mechanisms that are believed to underlie the

complex regional pain syndrome (CRPS), including ischemia, inflammation and sensitization. Chronic

postischemia pain (CPIP) has been developed as an animal model that mimics the symptoms of CRPS-I.

The possible involvement of NFkB in CRPS-I was studied using CPIP rats. Under sodium pentobarbital

anesthesia, a tourniquet was placed around the rat left ankle joint, producing 3 hours of ischemia,

followed by rapid reperfusion (IR injury). NFkB was measured in nuclear extracts of muscle and spinal

cord tissue using ELISA. Moreover, the anti-allodynic (mechanical and cold) effect was tested for sys-

temic, intrathecal, or intraplantar treatment with the NFkB inhibitor pyrrolidine dithiocarbamate

(PDTC). At 2 and 48 hours after IR injury, NFkB was elevated in muscle and spinal cord of CPIP rats

compared to shams. At 7 days, NFkB levels were normalized in muscle, but still elevated in spinal

cord tissue. Systemic PDTC treatment relieved mechanical and cold allodynia in a dose-dependent

manner, lasting for at least 3 hours. Intrathecal—but not intraplantar—administration also relieved

mechanical allodynia. The results suggest that muscle and spinal NFkB plays a role in the pathogen-

esis of CPIP and potentially of human CRPS.

Perspective: Using the CPIP model, we demonstrate that NFkB is involved in the development of

allodynia after a physical injury (ischemia and reperfusion) without direct nerve trauma. Since CPIP

animals exhibit many features of human CRPS-I, this observation indicates a potential role for

NFkB in human CRPS.
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C
omplex regional pain syndrome (CRPS) is a painful
and disabling complication of an injury, for exam-
ple, a fracture or sprain, which affects the distal

end of the injured extremity. CRPS patients can be classi-
fied into 2 subtypes, based on the presence (type II) or ab-
sence (type I) of direct nerve injury. The majority of CRPS
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patients are considered to suffer from type I. CRPS is as-
sumed to evolve from several pathological mechanisms,
including oxidative stress,5,29 classic4,7,23,24 and neuro-
genic4,7 inflammation, and autonomic17 and sensory
nerve system alterations.54 A previously described auto-
mated analysis of literature has revealed that the tran-
scription factor nuclear factor kappa B (NFkB) is
involved in all these disease mechanisms.21 For example,
affected limbs of human CRPS patients show signs of
chronic ischemia,29,53 which can induce NFkB activation,
mediated by the formation of reactive oxygen species
(ROS) and peroxinitrite.16,20 Inflammatory mediators, in-
cluding tumor necrosis factor alpha (TNFa), interleukin-1
(IL-1), and IL-6 have been demonstrated in blister23 and
spinal cord fluid1 of CRPS patients, and can activate or
are activated themselves by NFkB.9,26,48 Moreover, NFkB
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interacts with neuropeptides such as calcitonin gene re-
lated protein (CGRP)35 and substance P (SP) 36 that have
been found abnormally expressed during CRPS.7,34 Fi-
nally, animal studies have revealed that NFkB is involved
in spinal plasticity39 and the development of neuro-
pathic pain.50,51

NFkB resides in the cytosol of many different cell types
and can be activated by many triggers, including ultravi-
olet radiation, free radicals, cytokines, and products of
bacterial and viral infections.12 Upon activation, inhibi-
tory kappa B (IkB) protein is cleaved from the NFkB com-
plex, which subsequently forms dimers that are capable
of passing through the nuclear membrane. In the
nucleus, NFkB promotes the transcription of a wide vari-
ety of genes. NFkB has been attracting considerable sci-
entific attention over the past years as a key factor in
inflammation, apoptosis, and neuronal-glial interac-
tions.3 Excessive NFkB activity has been attributed to
the pathogenesis of several chronic inflammatory disor-
ders and oncological diseases.52 Since 2005, the NFkB
pathway inhibitor bortezomib has been applied success-
fully in the therapy of multiple myeloma and other malig-
nancies.45 An NFkB inhibitor that is frequently applied in
research settings is pyrrolidine dithiocarbamate (PDTC).
PDTC is a chemical with metal chelating and antioxidant
properties, and inhibits NFkB activity by blocking the
phosphorylation of IkB.37,42 Systemically administrated
PDTC and other dithiocarbamates have been shown to
be protective and therapeutic in animal models for ische-
mia and reperfusion (IR) injury22, acute inflammation,15

and neuropathic pain.31

The chronic posti-schemia pain (CPIP) model is an ani-
mal model for the study of molecular mechanisms that
underlie the sensory disturbances occurring in rats after
IR injury of the hind paw. CPIP rats display several fea-
tures that resemble human CRPS, including edema, hy-
peremia, and the development of mechanical and cold
allodynia without direct nerve injury.14 The CPIP model
has therefore been proposed as animal model for CRPS
type-I. The aim of the present study was investigate the
involvement of NFkB in CPIP, and potentially the patho-
genesis of CRPS, by measuring NFkB levels and assessing
the anti-allodynic effect of NFkB inhibition by PDTC in
rats after IR injury.

Methods

Study Design
NFkB levels were measured in muscle and spinal cord

tissue of CPIP animals and compared to sham animals
at 2 hours (CPIP, N = 15; sham, N = 9), 48 hours (CPIP,
N = 15; sham, N = 9–10) and 7 days (CPIP, N = 6; Sham,
N = 7) after IR injury.

The effect of NFkB inhibition by systemic PDTC admin-
istration on allodynia was studied in CPIP rats using 4
treatment groups (saline and 10, 30, and 100 mg/kg of
PDTC; 10 rats per group) and in sham rats using 2 treat-
ment groups (saline and 100 mg/kg of PDTC; 10 rats per
group). PDTC/saline was administered intraperitoneally
(i.p.) 48 hours after IR injury. Animals were tested for me-
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chanical and cold allodynia in the ipsilateral hind paw
just before treatment, and at 30, 60, 90, 120, and 180
minutes after treatment.

Additionally, to investigate the site of PDTC effects, in-
trathecal or intraplantar administrations (250 mg per rat)
were performed in 2 additional groups of animals (N = 10
per group) and compared to saline treatment using both
administration routes (N = 10 per group). Intrathecal in-
jections (20 mL volume) were performed by L6 lumbar
puncture under brief anesthesia with isofluorane,
whereby intrathecal delivery was confirmed by observ-
ing an injection induced tail-flick.40 Intraplantar injec-
tions (50 mL volume) were performed in the ipsilateral
foot of awake animals. Mechanical allodynia was mea-
sured in both the ipsi- and the contralateral hindpaw
at 30 and 60 minutes after PDTC administration.

All treatment and testing procedures were performed
by a single experimenter per test, who was blinded for
the CPIP/sham status of rat as well as for the treatment
status (PDTC or saline). PDTC was obtained from Sigma-
Aldrich (St. Louis, MO) and was freshly dissolved daily
in saline.

Animals
Male Long Evans rats (275–300 g, Charles River, Que-

bec) arrived at least 5 days before the start of experi-
ments. They were kept under a 12 hour/12 hour light-
dark cycle (lights on at 7:00 h) with free access to food
and water. All experiments were performed during the
light cycle. Methods were approved by the Animal Care
Committee at the McGill University, and conformed to
the ethical guidelines of the Canadian Council on Animal
Care.

CPIP
CPIP was induced by ischemia and reperfusion (IR) in-

jury of the left hind paw as described by Coderre
et al.14 Briefly, animals were anesthetized over a 3-hour
period with a bolus (55 mg/kg, i.p.) and chronic i.p. infu-
sion of sodium pentobarbital for 2 hours (27.5 mg/kg/h).
After induction of anesthesia, a Nitrile 70 Durometer
O-ring (O-rings West, Seattle, WA) with a 5.5 mm internal
diameter was placed around the rat’s left ankle joint.
After 3 hours the O-ring was cut, allowing reperfusion
of the hind limb. Sham animals underwent anesthesia
similar to the CPIP animals, but an O-ring was not placed
around the ankle.

Tissue Sampling and Preparation
Animals were euthanized by decapitation under anes-

thesia with isofluorane. Immediately, muscle samples of
the superficial plantar layer (one each from the Flexor
Hallucis Brevis, Flexor Digiti Minimi Brevis and Flexor
Digitorium Brevis, each weighting between 29 and 50
mg) and spinal cord samples at L5-L6 (each weighting
12 to 20 mg) were obtained and quickly frozen in isopen-
tane, kept on dry ice, and stored at –80�C until process-
ing. Spinal cord samples were sectioned to isolate the
dorsal half, which contained predominantly the dorsal
horns, and sectioned again at the midline to isolate
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ipsilateral and contralateral tissue. Samples were thawed
at 4�C and homogenized either mechanically (muscle) or
by sonification (spinal cord) in 12 mL/mg tissue of RIPA
buffer containing 50 mM Tris-HCl, 150 mM NaCl, 1mM
EDTA, 1% Igepal (Sigma-Aldrich), 1% Sodium deoxycho-
late and .1% SDS (Ph 7.4), to which was added a 1%
protease inhibitor cocktail (Sigma-Aldrich). Tissue ho-
mogenates were centrifuged at 3,000 g for 10 minutes,
and the supernatant was collected and processed for nu-
clear fraction extraction following the recommended
procedure of a commercially produced extraction kit
(Chemicon Nuclear Extraction Kit; Millipore Corp Biller-
ica, MA). Briefly, after spinning at 250 g for 5 minutes,
samples were diluted 1/5 (vol/vol) in cytoplasmic
lysis buffer and incubated at 4�C for 20 minutes. The
homogenates were mechanically sheared by repeatedly
drawing and ejecting each sample through a series of
25 ga, 26 ga and finally 27 ga needles and centrifuged
at 8,000 g for 20 minutes at 4�C. Subsequently, the pellets
were resuspended in nuclear extraction buffer, mechan-
ically disrupted with a 27 ga needle, incubated for
60 minutes, and then centrifuged at 16,000 g for 6 min-
utes at 4�C, in order to obtain the supernatant that con-
tained the nuclear fraction. Nuclear fractions were
concentrated by centrifugal filtration at 14,000 g for 20
minutes using cellulose filters with a 30 kDa cut-off (Mi-
crocon YM-30; Millipore Corp). Nuclear fractions remain-
ing after filtration were collected and diluted in buffer
to a final volume of 100 mL for muscle and 50 mL for spinal
samples. Total sample protein content was determined
by the Bradford method.10 Nuclear extracts were stored
at –80�C until further analysis.

Measurement of NFkB by ELISA
NFkB measurements were performed using a commer-

cially supplied NFkB transcription factor binding assay
(Cayman Chemical, Ann Arbor, MI) according to the man-
ufacturer’s suggested protocol. Briefly, duplicate 10 mL
samples of nuclear extract were first incubated overnight
at 4�C in wells precoated with a dsDNA sequence corre-
sponding to the NFkB consensus motif. The N-terminus
of NFkB is highly conserved (92% sequence homology be-
tween rat and human p50 subunit); thus, the NFkB con-
sensus motif of the assay should bind both human and
rat p50. After 5 washes, the samples were incubated
overnight at 4�C with a rabbit polyclonal antibody to
the p50 subunit of NFkB at a final dilution of 1:100
(sc-7178; Santa Cruz Biotechnology, Santa Cruz, CA).
The detection antibody is an epitope corresponding to
amino acids 120-239 mapping at the N-terminus of
NFkB of human origin recommended for the detection
of NFkB p50 and p105 and has high cross-reactivity be-
tween mouse, rat, and human. Subsequently, samples
were incubated for 60 minutes with an HRP-conjugated
goat antirabbit secondary antibody (Cayman Chemical),
followed by colorimetric detection (measured as absor-
bance at 450 nm, Versamax; Molecular Devices, Sunny-
vale, CA). After background subtraction, absorbance
measures were referred to a standard curve obtained
from a series of duplicate wells containing measured
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amounts of human recombinant p50 (Cayman Chemical)
and then converted to an estimate of the quantity of
p50/well, which was normalized by dividing the p50 esti-
mate by the total amount of protein measured in the
sample.

Mechanical and Cold Allodynia
Mechanical allodynia was assessed by measuring the

50% withdrawal response to stimulation with von Frey
filaments, according to a modified method as described
by Chaplan et al.11 Briefly, rats were placed in Plexiglas
cages with a wire grid bottom. Filaments (Stoelting,
Wood Dale, IL) were applied to the plantar surface of
the hind paw for approximately 5 seconds in either as-
cending or descending strength, to determine the fila-
ment closest to the threshold of response. CPIP rats
that had not developed mechanical allodynia at 48 hours
post-IR injury (nonresponders, 50% threshold > 10 g)
were excluded from further measurements of mechani-
cal allodynia after PDTC treatment.

Cold allodynia was assessed using a modification of
the acetone drop method as described by Choi et al.13

A drop of acetone was placed on the plantar surface of
the foot and the response was measured as the amount
of seconds of nociceptive behavior observed during the
first minute after acetone application. Again, nonre-
sponders for cold allodynia at 48 hours post-IR injury
(pain behavior for 1 second or less) were excluded from
further measurements of cold allodynia after PDTC
treatment.

Mechanical and cold allodynia were tested in the same
animals, with mechanical allodynia always tested first.
When both sides were tested, the contralateral side
was tested before the ipsilateral side.

Statistics
All statistical analyses were performed using the statis-

tical package for social sciences (SPSS v.12.0; SPSS Inc, Chi-
cago, IL) Significance was established at P < .05. Data
were plotted as the mean 6 standard error of the
mean (SEM).

NFkB in tissue from the ipsi- and contralateral side of
CPIP rats was compared to sham rats using a Mann-Whit-
ney U test. Ipsi- vs contralateral differences within rats
were compared using a Wilcoxon signed rank test.

Baseline mechanical and cold allodynia test results
were compared with one-way ANOVA. Post-treatment
differences between groups were analyzed using
repeated measures ANOVA with a Greenhous-Geisser
correction for sphericity. In post hoc analyses, each treat-
ment group was compared to the saline control group
applying a Bonferoni correction. In CPIP rats only,
decreases in cold allodynia relative (percentage) to
pretreatment values were calculated and compared to
the saline control group. For mechanical allodynia,
a delta area under the curve (DAUC) relative to
pretreatment values was calculated over the period of
observation and compared with the saline group using
one-way ANOVA followed by a post hoc LSD test.
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Pre- and posttreatment values within 1 treatment group
were compared using a Wilcoxon signed rank test.

Results

NFkB in Muscle and Spinal Cord
The results of NFkB measurements in muscle and spinal

cord are depicted in Fig 1. Because in sham rats NFkB
levels at both sides were similar (P = .162 for muscle
and P = .694 for spinal cord), the right and left side mea-
sures of sham rats were combined in the comparison to
CPIP rats. At both 2 and 48 hours after IR injury, NFkB
was increased compared to sham rats in muscle
(P = .004 at 2 hours and P = .020 at 48 hours) as well as spi-
nal cord (P = .027 at 2 hours and P = .001 at 48 hours) from
the ipsilateral side of CPIP rats. At 7 days after IR injury,
NFkB levels in muscle did not differ between CPIP and
sham rats. However, in spinal cord, the ipsilateral NFkB
levels from CPIP rats were still elevated (P = .001). Re-
markably, also on the contralateral side of CPIP rats,
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Figure 1. (A) NFkB levels in muscle from the ipsilateral (ipsi)
and contralateral (contra) hind paw of chronic post-ischemia
pain (CPIP) rats compared to shams at 2 hours, 48 hours and 7
days postreperfusion, measured by ELISA. CPIP ipsilateral at 2
and 48 hours, N = 15; at 7 days, N = 6. CPIP contralateral at 2
and 48 hours, N = 15; at 7 days, N = 6. Sham at 2 and 48 hours,
N = 18; at 7 days, N = 14. *P < .05, **P < .005, Mann-Whitney U
test compared to shams (B). NFkB levels in spinal cord from the
ipsilateral (ipsi) and contralateral (contra) side of CPIP rats com-
pared to shams at 2 hours, 48 hours and 7 days post reperfusion,
measured by ELISA. CPIP ipsilateral at 2 and 48 hours, N = 15; at 7
days, N = 6. CPIP contralateral at 2 and 48 hours, N = 15; at 7 days,
N = 6. Sham at 2 and 48 hours, N = 18; at 7 days, N = 14. *P < .05,
**P < .005, Mann-Whitney U test compared to shams.

1164
NFkB seemed to be increased compared to shams, al-
though this difference was only statistically significant
for the spinal cord at 48 hours and 7 days after IR injury.
Moreover, within CPIP rats there was no significant dif-
ference in NFkB levels between ipsi- and contralateral
sides in both muscle and spinal cord.

Systemic PDTC Treatment
Paw-withdrawal thresholds of the ipsilateral hind paw

at baseline did not differ between CPIP (N = 40) and sham
(N = 20) rats (13.2 1/- 3.6 g and 13.4 1/- 3.0 g respectively,
P = .823). At 48 hours after IR injury, CPIP rats developed
a decrease in paw-withdrawal threshold (mean 50% von
Frey threshold of 6.83 6 3.64 g) compared to shams
(mean 50% von Frey threshold of 11.88 6 3.42 g)
(P < .0001). Within the CPIP group, 32 rats (80%) dis-
played a 50% von Frey threshold < 10 and were regarded
as responders for mechanical allodynia.

Acetone responses at baseline were similar between
CPIP and sham rats (1.075 6 1.8 seconds and 1.10 6 1.6
seconds, respectively, P = .957). Compared to shams
(2.05 6 3.1 seconds), acetone responses were increased
in CPIP rats at 48 hrs after IR injury (3.78 6 4.3 seconds),
although the difference was not significant (P = .113).
In the CPIP group, 26 rats (65%) displayed pain behavior
for more than 1 second, and were considered as
responders for cold allodynia.

The effect of systemic PDTC treatment at 48 hours
after IR injury on mechanical allodynia is displayed in
Fig 2A. A significant main effect of time was observed
(F(4,121) = 14.3, P < .001), as well as a significant main ef-
fect of treatment (F(3,28) = 8.1, P < .001), but there was
no significant time � treatment interaction (F(13,121) =
1.29, P = 0.229). In post hoc analyses, CPIP rats that had
received the highest dosage of PDTC (100 mg/kg)
showed a decrease in mechanical hypersensitivity com-
pared to the saline group (P = .02) and the group that re-
ceived the lowest dose of PDTC (10 mg/kg, P = .02). The
DAUC showed an effect of treatment for the highest
(100 mg/kg, P = .002) and middle (30 mg/kg, P = .021)
doses of PDTC, compared to saline controls. In the
sham rats, no significant effect of time was observed,
but there was a significant main effect of treatment
(F(1,17) = 7.3, P = .015) and a significant time � treat-
ment interaction (F(6,102) = 3.1, P = .008). Also within
sham rats, the DAUC differed between the PDTC and
the saline-treated group (P = .028).

Regarding the absolute values for cold allodynia, a sig-
nificant main effect of time was observed (F(5,104) = 5.7,
P < .001), but the main effect of treatment (F(3,22) = 2.6,
P = .079) and the time � treatment interaction
(F(14,104) = 1.7, P = .057) just failed to reach significance.
In sham rats, there was no significant main effect of time
(F(3,50) = 1.8, P = .164) or treatment (F(1,17) = 0.8, P =
.377), nor was there a significant time� treatment inter-
action (F(3,50) = 1.2, P = 0.318). For CPIP rats only, the rel-
ative (percentage) decrease in cold allodynia after
systemic PDTC treatment is depicted in Fig 2B. A signifi-
cant main effect of treatment was observed (F(3,22) =
4, P = .020), and post hoc analyses demonstrated
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Figure 2. (A) Mechanical paw-withdrawal threshold in chronic post-ischemia pain (CPIP) and sham rats after systemic pyrrolidine di-
thiocarbamate (PDTC) treatment at 48 hours postreperfusion, compared to saline treatment. CPIP saline, N = 7; CPIP PDTC 10 mg/kg,
N = 9; CPIP PDTC 30 mg/kg, N = 9; CPIP PDTC 100 mg/kg, N = 7; sham saline, N = 10; sham CPIP, N = 10. *P < .05, repeated measurements
ANOVA followed by a Bonferoni test compared to the saline control group. #P < .05, ##P < .005, one-way ANOVA followed by an LSD
test compared to the saline control group (B). Relative changes in acetone responses in the ipsilateral hind paw of CPIP rats after sys-
temic saline or PDTC treatment at 48 hours postreperfusion, compared to acetone responses before treatment. CPIP saline, N = 9; CPIP
PDTC 10 mg/kg, N = 6; CPIP PDTC 30 mg/kg, N = 4; CPIP PDTC 100 mg/kg, N = 7. *P < .05, repeated measurements ANOVA followed by
a Bonferoni test compared to the saline control group.
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a decrease in cold allodynia in rats that had received the
highest dose of PDTC compared to saline treatment (P =
.035) and the lowest PDTC dose (P = .045).

Intrathecal and Intraplantar PDTC
Treatment

At baseline, there was no difference in mechanical sen-
sitivity between the right and left hind paw (13.5 6 2.15
g and 13.3 6 2.20 g, P = .689), while after IR injury, 26 out
of 40 rats (65%) had developed mechanical allodynia.

The effects of intrathecal and intraplantar PDTC treat-
ment at 48 hours after IR injury on mechanical allodynia
are depicted in Fig 3. For intrathecal treatment (Fig 3A),
there was a significant main effect of time (F(2,27) = 21.6,
P < .001), but there was no significant main effect of
treatment (F(1.14) = 2.6, P = .132) or time � treatment
interaction (F(2,27) = 2.6, P = .094). However, in the
PDTC treatment group, the mean 50% VF threshold
was increased at both 30 minutes (P = .017) and 60 min-
utes (P = .012) posttreatment, compared to the pretreat-
ment threshold. No pre- vs postdifferences were
observed in the saline-treatment group (P = .687). The
DAUC was significantly larger for the PDTC group com-
pared to the saline group (P = .034).

For intraplantar PDTC treatment (Fig 3B), a significant
main effect of time was observed (F(2,14) = 45.9,
P < .001), but there was no significant main effect of
treatment (F(1,8) = 0, P = .980) or time� treatment inter-
action (F(2,14) = 1.9, P = .195). The mean 50% von Frey



thresholds did not differ significantly between before
and after treatment. Additionally, the DAUC was not sig-
nificantly different.

Discussion
We investigated the involvement of NFkB in CPIP. NFkB

was increased in muscle and spinal cord from CPIP rats
compared to shams at both 2 and 48 hours after IR injury.
At 7 days after IR injury, NFkB was equalized to shams in
muscle, but was still elevated in spinal cord. Systemic
PDTC administration at 48 hours after IR injury relieved
mechanical and cold allodynia in a dose-dependent man-
ner. Mechanical allodynia was also relieved upon intra-
thecal treatment, but not upon intraplantar treatment.

Considering previous studies, a role of NFkB in CPIP
was a plausible expectation. First, several studies in dif-
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chronic post-ischemia pain (CPIP) rats after intrathecal treat-
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ferent tissue types have demonstrated increased NFkB
activity early after hypoxia, for example, in myocardial
tissue, brain, hepatic tissue, and skeletal muscle.37,38,42,49

In all of these studies, the extent of the damage caused
by IR injury could be attenuated by administration of
an NFkB inhibitor. Second, CPIP rats display signs of in-
flammation.14 IR injury is known to provoke a well-docu-
mented cascade of inflammatory events,8 and NFkB is an
important mediator in such inflammatory responses.
Third, CPIP rats develop neuropathic painlike symptoms,
including mechanical and cold allodynia. Previously, in-
creased NFkB activity has been demonstrated in animal
neuropathic pain models, while these symptoms can be
relieved by an NFkB inhibitor.32,47,51

The hypothetical involvement of NFkB in CPIP is con-
firmed by our present observations. NFkB elevation in
muscle tissue is consistent with a previous report of mus-
cular NFkB activation upon ischemia by arterial clamp-
ing.37 On the contrary, increases in spinal NFkB levels
following peripheral IR injury is to our knowledge
a new finding, although spinal NFkB activation has
been reported following peripheral nerve section44 and
nerve inflammation.25,33 These peripheral triggers can in-
duce an intraspinal cytokine release, a process that may
be mediated by NFkB.47,51 However, neuropathic painlike
symptoms and spinal NFkB activation in CPIP rats are sub-
sequent to IR injury instead of traumatic nerve injury or
direct immunological stimulation.14 Presumably, IR injury
can induce pathological responses in the central nervous
system (CNS) similar to those induced by mechanical or in-
flammatory nerve damage, through direct activation of
nociceptors by either reactive oxygen species (ROS) or
ROS-induced inflammatory reactions. The observation
in CPIP rats of prolonged spinal NFkB activity (until at
least 7 days after IR injury), when peripheral levels were
normalized, suggests that eventually the CNS pathology
becomes independent of its initial peripheral trigger. This
is consistent with previous observations showing that
CPIP rats display ongoing mechanical allodynia at 7
days after IR injury, while plasma extravasation in the af-
fected hind paw had been normalized within 24 hours.14

NFkB activity is also increased in the contralateral mus-
cle tissue of CPIP rats, although not as profoundly as on
the ipsilateral side, and within CPIP rats, a significant dif-
ference between the ipsi- and contralateral sides was not
observed. A possible explanation may be the spread of
free radicals and subsequently activated inflammatory
mediators from the side of IR injury to the opposite
side by blood circulation. In support of this possibility,
contralateral allodynia has been found in the CPIP rats
in the past,14 although not consistently in all studies.41

It may be that contralateral allodynia depends on spinal
sensitization which may be mediated by NFkB that is
increased in the contralateral spinal cord dorsal horn.

The anti-allodynic effect of systemic PDTC administra-
tion was clear and dose-dependent. Results from intra-
thecal administration were less pronounced, and no
effect was obtained by intraplantar treatment. Presum-
ably, at 48 hours after IR injury, mechanical allodynia is
mainly caused by the enhanced central, and not the pe-
ripheral, NFkB activity. PDTC passes the blood brain
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barrier and systemic doses will likely produce CNS effects,
whereas low concentration intraplantar injections
should not. However, it is also possible that we were un-
able to determine the effective dose for local treatment.
In sham animals, we observed a slightly decreasing 50%
von Frey threshold during the course of the experiment
(Fig 1A), which we believe can be attributed to sensitiza-
tion by repeated testing. This sensitization did not occur
in sham rats that were systemically treated with PDTC.
PDTC may have prevented mechanical sensitization
upon repeated mechanical stimulation by reducing
NFkB activity, which was also measured at lower levels
in the peripheral and central tissues of sham rats.

In CPIP rats, we observed a central and peripheral in-
crease of NFkB activity together with allodynia that
was relieved by administration of the NFkB inhibitor
PDTC. However, we did not show directly the relation-
ship between PDTC administration and decreasing
NFkB activity. Although this might have completed the
study, we considered such experiments of limited addi-
tional value, since both a central and peripheral decrease
in NFkB activity upon systemic PDTC treatment have al-
ready been demonstrated convincingly by others. For ex-
ample, Lille et al have demonstrated that systemic PDTC
administration results in diminished NFkB binding activ-
ity in muscle tissue,37 and Nurmi et al have demonstrated
blocking of the otherwise increased NFkB activity upon
middle cerebral artery occlusion when rats were pre-
treated with systemically administered PDTC.42

Few animal models have been used to study the molec-
ular mechanisms that potentially underlie CRPS. Some of
these rely on direct nerve injury and are therefore more
representative for CRPS type II and not for CRPS type
I.28,30 Animal models that claim to mimic CRPS-I involve
tibia fracture and casting,19 local infusion of a free radi-
cal donor,53 interarterial infusion of SP,18 and IR injury
(CPIP model).14 The IR injury or CPIP model that was
used in the present study resembles human CRPS-I in sev-
eral aspects. CPIP rats display features that represent
both inflammatory and neuropathic painlike symptoms
of human CRPS. Moreover, CPIP rats express sympatheti-
cally maintained pain,55 a phenomenon that in the past
has been considered almost pathognomic for CRPS, al-
though currently it is acknowledged to be present in
only a subset of CRPS patients. Similar to CRPS-I patients,
CPIP rats receive poor pain relief from classical anti-
inflammatory and anti-neuropathic pain treatments,41

but respond well to treatment with free radical scaven-
gers.14 The major advantage of the CPIP model above
others is that the CRPS-resembling features occur after
a physical (not chemical) injury without microscopic evi-
dence of direct nerve injury.

However, despite these parallels between CPIP rats and
human CRPS, one can still argue about the convenience
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