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)e purpose of this review is to summarize the pathophysiology of complex regional pain syndrome (CRPS), the underlying
molecular mechanisms, and potential treatment options for its management. CRPS is a multifactorial pain condition. CRPS is
characterized by prolonged or excessive pain and changes in skin color and temperature, and/or swelling in the affected area, and
is generally caused by stimuli that lead to tissue damage. An inflammatory response involving various cytokines and autoan-
tibodies is generated in response to acute trauma/stress. Chronic phase pathophysiology is more complex, involving the central
and peripheral nervous systems. Various genetic factors involved in the chronicity of pain have been identified in CRPS patients.
As with other diseases of complex pathology, CRPS is difficult to treat and no single treatment regimen is the same for two
patients. Stimulation of the vagus nerve is a promising technique being tested for different gastrointestinal and inflammatory
diseases. CRPS is more frequent in individuals of 61–70 years of age with a female to male ratio of 3 :1. Menopause, migraine,
osteoporosis, and asthma all represent risk factors for CRPS and in smokers the prognosis appears to be more severe. )e
pathophysiological mechanisms underlying CRPS involve both inflammatory and neurological pathways. Understanding the
molecular basis of CRPS is important for its diagnosis, management, and treatment. For instance, vagal nerve stimulation might
have the potential for treating CRPS through the cholinergic anti-inflammatory pathway.

1. Introduction

Complex regional pain syndrome (CRPS) is generally
characterized by chronic pain, changes in skin color and
temperature [1], edema in the affected area, localized
sweating, and altered pattern of hair and nail growth [2].
Muscles become weak and the skin may appear glossy [2]. In

later stages, the limb typically becomes cold. Tremor and
dystonia may develop [3]. CRPS can be divided into two
distinct subtypes. CRPS-I (previously known as reflex
sympathetic dystrophy syndrome), without confirmed nerve
injury, is caused by a fracture, bruise, or joint sprain
combined with immobilization. CRPS-II (previously known
as causalgia) is mainly causedbya peripheral nerve injury [4].
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Since there is now evidence of neuronal injury in CRPS-I, as
well [5], it is uncertain whether the two subtypes will be
maintained.

CRPS is more frequent in individuals of 61–70 years of
age with a female to male ratio of 3 :1. Menopause, migraine,
osteoporosis, and asthma all represent risk factors for CRPS
and in smokers the prognosis appears to be more severe
[6–8].

CRPS develops in response to injuries involving a limb
(arm, leg, hand, or foot). It is a chronic pain condition that
lasts more than six months. Changes in the central and
peripheral nervous systems are involved in the pathogenesis
of this syndrome [9, 10]. Symptoms may vary in degree,
depending on the extent of tissue damage. In some cases,
symptoms are mild and pass over a period of weeks, while in
other cases they may be protracted. In severe cases, patients
may not recover and may have a long-term disability [11].

)is review aims to elucidate the pathophysiological
basis and the role of genetics and the autonomic nervous
system (ANS) in the development and management of
CRPS. We also review the vagus nerve (VN) involvement in
pain perception and how VN stimulation can help pain
management.

2. Pathophysiology of Chronic Regional Pain

CRPS involves a set of maladaptive conditions characterized
by continuing pain, either induced or spontaneous. )e pain
is regional; i.e., it does not involve a specific organ or nerve
territory. Multiple pathophysiological mechanisms are in-
volved in the development of CRPS, to which the central
nervous system(CNS) is widely reported to contribute [10].

Although many attempts have been made to reduce
CRPS to a single pathophysiological mechanism (e.g.,
sympatho-afferent coupling) [12], it is increasingly accepted
that multiple mechanisms are involved. Apparently, CRPS is
also a disease of the CNS. In fact, CRPS patients display
changes in somatosensory processing of thermal, tactile, and
noxious stimuli. Furthermore, the sympathetic nervous
system changes are also observed in patients with unilateral
CRPS symptoms and the somatomotor system may also be
affected [10]. Based on the relative contribution of the
pathological mechanisms involved, CRPS may exist in dif-
ferent subtypes [13]: CRPS-I, without a direct nerve injury,
caused by a fracture, bruise, or joint sprain combined with
immobilization; CRPS-II, caused by peripheral nerve injury
[4]. Two main mechanisms have been proposed.In-
flammation in response to trauma [14], in particular the
neurogenic inflammatory component [15], and sympathetic
nervous system dysfunction [16].

3. Inflammation in Pain and
Role of Autoantibodies

CRPS patients show signs of inflammation, such as redness,
edema, pain, and change in skin temperature, especially in
the acute phase. )is demonstrates that immune activation
in posttraumatic patients can be a primary feature of CRPS
pathophysiology [17]. )e innate immune response triggers

proliferation of keratinocytes and release of proin-
flammatory cytokines, such as tumor necrosis factor-α
(TNF-α), interleukin 1β, and interleukin 6 [18]. )ese cy-
tokines activate the connective tissue, leading to contrac-
tures [19]. )ey also act on osteoblasts and osteoclasts,
leading to the high-turnover osteoporosis and bone loss
associated with CRPS [20].

Cytokines also sensitize peripheral nociceptors and
second-order neurons in the spinal cord, increase pain
sensitivity (hyperalgesia), and facilitate the release of neu-
ropeptides from primary nociceptive afferents [21]. Neu-
ropeptides such as calcitonin gene-related peptide and
substance P are released from cytokine-sensitized noci-
ceptors and induce a phenomenon known as neurogenic
inflammation, which could be responsible for the reddening,
warmth, and edema in acute CRPS [22]. Another peptide,
endothelin 1, contributes to cold, bluish skin [23]. In the
course of CRPS, most of these signs normalize, which
demonstrates a change in pathophysiology [3].

In addition to activation of the innate immune response
and release of cytokines, there is also evidence suggesting a
contribution of the adaptive immune response [24]. )e role
of autoimmunity and autoantibodies in response to injury
has been studied by various researchers who have reported
linkage of HLA class 1 antigens with the development of
CRPS [25] and autoantibodies against autonomic nervous
system structures [26]. Goebel et al. also demonstrated in-
creased binding to various peripheral and CNS structures in
CRPS serum [27]. However, the underlying antigens and
pathophysiology are unclear. Kohr et al. found that 30–40%
of CRPS patients have surface-binding autoantibodies
against an inducible ANS autoantigen. )ese findings sug-
gest that CRPS may involve autoimmune mechanisms [24].

Pathogenic autoantibodies targeting the ANS have been
found in CRPS patients [24]. Tékus et al. confirmed the role
of autoimmunity in an IgG-transfer-trauma mouse model of
CRPS and found key clinical indicators of the human dis-
ease, namely, swelling and mechanical hyperalgesia, in the
mouse model [28]. Further studies are needed to elucidate
the origin and function of these autoantibodies in CRPS
[24].

Further evidence in support of an autoimmune com-
ponent involving dendritic cells comes from a study showing
that IgG immune complexes stimulate migration of den-
dritic cells from peripheral tissue to draining lymph nodes in
vitro [29].)e role of dendritic cells in autoimmunity has yet
to be fully explored.

4. Role of the Autonomic Nervous System in
Pain Regulation

Mechanical or thermal stress stimuli damage tissues, acti-
vating peripheral nociceptors. However, nociception does
not always cause pain perception [30]. In CRPS patients,
there is great variation in the warmth and sweating of the
affected region, showing the involvement of local neurogenic
inflammation [31], particularly in the acute phase, and
disturbance of central thermoregulation [32]. )e primary
homeostasis of the body is mainly controlled by the ANS
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through balanced sympathetic and parasympathetic activity.
Acute stress activates the sympathetic branch of the nervous
system and causes an unbalance between sympathetic and
parasympathetic activities [33]. In cases of chronic stress, the
balance is disrupted for longer periods. In CRPS patients,
there is an imbalance in ANS activity [34], and sympathetic
dysfunction leads to clinical manifestations, including limb
sweating, changes in skin temperature and color, and edema
[3].

Activation of peripheral nociceptors activates noci-
ception, the sensory nervous system’s response to triggers.
Nociception triggers the brain and spinal cord response,
with or without pain perception; in fact, the feeling of pain
does not depend on nociception [31]. Pain depends on
interoception, the sense of the physiological condition of the
entire body, not just the viscera [35].

Researchers have used noninvasive neuroimaging
techniques to study nervous system activity in response to
different nociceptors. )ey found that nociceptive stimuli
generate responses in cortical and subcortical brain struc-
tures. Based on preferential involvement in pain perception
and consistency across different studies, these brain struc-
tures have been clustered and named “painmatrix.”)e pain
matrix involved in pain generation includes the somato-
sensory (primary and secondary), cingulate, and insular
cortices [36–39]. By measuring the activity in the cortical
network (pain matrix), the actual feeling of pain generated
by nociception can be established and quantified [40].

All the structures of the pain matrix are major con-
stituents of the ANS and play an important role in emotional
and cognitive processes. )is shows the functional and
anatomical link between the pain matrix and the ANS [41].
)e ANS includes afferent and efferent nerve fibers. )in
afferent fibers are responsible for transmitting interoception
from sensory receptors of internal organs, glands, and blood
vessels to the spinal cord and other CNS structures. )e
internal environment is also monitored by central chemo-
receptors, including those in the hypothalamus. Neuroan-
atomical analysis has revealed that the afferent fibers of the
ANS are involved in conveying interoceptive information
(e.g., touch and pain sensation) to the brain through the
lamina I spinothalamocortical pathway involving cranial
nerves, e.g., the vagus nerve [42]. Painful stimuli are con-
veyed somatotopically to both insulae of the brain [43]. )is
highly specialized organization of nociceptive information
in these brain areas may serve a number of functions,
particularly that of coupling pain with the most appropriate
autonomic and affective/emotional states.

Sympathetic and parasympathetic nervous systems are
the two main efferent components of the ANS and they relay
information from the brain to every major system and organ
in the human body. Interactions between different brain
regions, including the medulla, pons, and hypothalamus,
may support the generation of differential autonomic re-
sponse to various physiological triggers and behavioral
challenges [44]. Neurons modulate painful information at
the spinal level directly on lamina I of the spinal cord [45].
Brain arousal and alertness, enhanced attention, and sensory
processing of environmental stimuli promoted by the ANS

play a crucial role in pain processing [46]. Alterations in the
sympathetic nervous system contribute to CRPS. Under-
standing these alterations may be an important step towards
providing appropriate treatments for CRPS [22].

5. Genetic Basis of Pain

Chronic pain, i.e., pain persisting for more than 12 weeks
despite medication or treatment, affects approximately 30%
of the population worldwide [47]. Genetic factors are a
major risk for the development of chronic pain and con-
tribute to the reported heritability of 16–50% [48, 49].
Researchers have delineated a centralized pain-processing
system involving different neurotransmitters and the cor-
responding receptors. )e system is modulated by growth
factors and cytokines. Genetic studies have shown a strong
association of pathological conditions with their alleged
causal factors at the gene/protein level. Genetic factors are
reported to play a role in CRPS, although familial occurrence
has not been extensively studied. A study on the Dutch
population reported that patients with familial CRPS de-
veloped the disease at a younger age with a severer phe-
notype than sporadic cases. Although no clear hereditary
pattern was observed, the data suggests the existence of a
genetic predisposition for developing CRPS [50]. Similarly,
different association studies have revealed that individuals
with different major histocompatibility complex (MHC)
alleles are more susceptible to CRPS [51–53].

Numerous genetic risk factors have been identified for
musculoskeletal, neuropathic, and visceral conditions. )e
genes involved in chronic pain include genes from different
biochemical/cell pathways (catecholaminergic, serotonergic,
estrogenic, glutamatergic, GABAergic, purinergic, and
orexinergic), cytokines, growth factors, and proteinases.
Rare but drastic mutations in single genes as well as poly-
morphisms in multiple genes have been identified as
causative agents in different disorders and pain conditions.

5.1. Monogenic Disorders Associated with Pain. Variants in a
single gene may cause pain disorders and can lead to ag-
gravation of nociception or to a painless state.)e latter class
of disorders is linked to genetic loci involved in pain sig-
naling or the viability of sensory neurons. )ese syndromes
are helpful for understanding the pathophysiological
mechanisms involved in pain processing. In fact, some of the
same genes that harbor painful neuropathic variants also
carry mutations leading to painless states [54]. For example,
de novo mutations in genes encoding sodium channels,
SCN9A, and SCN11A, have been reported in posttrauma
pain perception and primary erythromelalgia [55, 56].
Erythromelalgia is characterized by redness and painful
edema of the hands and feet, symptoms that have been
attributed to C-fiber hypersensitivity [57]. Yang et al. found
a link between primary erythromelalgia, the autosomal
dominant hereditary form of the disease, and rare gain-of-
function variations in sodium channel NaV1.7 encoded by
SCN9A [58]. )e study was later on replicated in Chinese
and Caucasian patients by various groups [59–61]. )e
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SCN9A variants implicated have been found to change the
electrophysiological properties of dorsal root ganglion
neurons, thereby affecting nociceptive signaling [62].

Variations in other genes have also been reported to be
involved in peripheral neuropathies. For instance, the in-
volvement of α-galactosidase A was reported in a small fiber
neuropathy patient [63]. Similarly, the involvement of
myelin protein zero was found in a family with debilitating
neuropathic pain and demyelination. Patients with isolated
peripheral nerve involvement with burning dysesthesias and
pain at the distal segments of the 4 limbs have been reported
to carry a mutation in a subunit of kinesin (KIF5A), a
protein involved in intracellular motility [64]. A frameshift
mutation in the TWIK-related spinal cord potassium
channel (TRESK) gene that severely impairs the encoded
protein’s function has also been discovered in familial mi-
graine conditions [65]. )e effect of genetic contributors
differs in neuropathic pain disorders in relation to the
particular nerve dysfunction involved. In rare monogenic
disorders, the somatosensory function is impaired by causal
mutations in a single gene.

5.2. Rare Variants Associated with Chronic Pain. Chronic
pain conditions are multifactorial disorders with a high
frequency in the population. Common single nucleotide
polymorphisms (SNPs) with aminor allele frequency of ≥1%
in the general population are not directly the cause of
chronic pain disorders but can modulate the susceptibility to
them. )e minor allele contributes to risk or protection by
increasing (gain-of-function) or decreasing (loss-of-func-
tion) the activity of the resulting protein. While studying the
association of genetic polymorphisms with pain perception,
Reimann et al. genotyped 27 SNPs in the SCN9A gene. )ey
observed a significant association between pain score and
SNP rs6746030 in the general population and later an as-
sociation with specific pain conditions. )e rarer A allele,
predicted to increase Nav1.7 (protein encoded by SCN9A)
activity, was associated with increased pain scores with
respect to the commoner G allele. Based on the particular
genotype of SCN9A, individuals may experience varying
degrees of pain in response to noxious stimuli [66].

Evidence of human leukocyte antigen involvement in the
pathophysiology of CRPS has been reported by various
researchers [67, 68]. A significant association of HLA-B62
and HLA-DQ8 alleles with CRPS patients with dystonia has
also been reported, implicating these HLA loci in CRPS
susceptibility and/or expression [69]. Dominguez et al.
observed an increased risk of persistent postoperative pain
after inguinal surgery in individuals carrying the HLA
haplotype DRB1∗04–DQB1∗03:02. )is suggests the in-
volvement of homozygous/heterozygous DQB1∗03:02 al-
leles in neuropathic pain conditions [70].

Low back pain, another common clinical complaint, is
associated with variations in the CASP9 gene, a mediator of
apoptosis [71, 72], and the matrix metalloproteinase 1
(MMP1) rs1799750 2G allele [73]. Additionally, polymor-
phisms in proinflammatory cytokine genes, mainly inter-
leukin 1A [74, 75], interleukin 1 receptor antagonist [74],

and interleukin 18 receptor subunits encoded by IL18R1 and
IL18RAP, are also associated with severity of lumbar disc
degeneration, low back pain, and disability, as well as with
the response to treatment [75].

Small fiber neuropathy has also been reported in patients
with joint hypermobility syndrome (JHS)/Ehlers–Danlos
syndrome (EDS) [76], delineating an association between
small nerve fiber impairment and itch. An inherited con-
nective tissue disorder, EDS has sometimes been reported in
CRPS patients, suggesting that it had a role in the devel-
opment of CRPS. )e pathophysiology may include stretch
injury of nerves passing through hypermobile joints,
weakened connective tissue, or postsurgical nerve trauma
[77].

By exome sequencing of a family affected with EDS,
Martinelli-Boneschi et al. identified two rare variations in
COL6A5 cosegregating with a chronic itch in eight affected
members and absent in nonaffected members. Two families
and a diabetic patient carried the nonsense c.6814G>T
(p.Glu2272∗) variant and another family carried the mis-
sense c.6486G>C (p.Arg2162Ser) variant. In silico analysis
showed that both variants may have pathogenic effects.
Results from in vitro studies revealed disorganization and
reduction in COL6A5 synthesis, indicating an association
between the COL6A5 gene and chronic familial itch [78].

More studies are required to delineate the contributory
genes in the regional pain syndrome.

6. Treatment Options

CRPS is a challenging chronic condition to treat successfully
[79]. Due to its multifaceted pathophysiology, there is un-
likely ever to be any general treatment for this syndrome.
Because of the absence of effective medical treatments,
palliative measures are often used, such as spinal cord
stimulation. Pain relief options include physiotherapy, anti-
inflammatory, and pain-relieving drugs (either oral, topical,
or intrathecal administration). Other treatments may in-
clude directly blocking sympathetic nerves, surgical sym-
pathectomy, and vagal nerve stimulation.

7. Pharmacological Treatments

For the treatment of CRPS, a number of drugs have been
tested in order to find which one may be effective in pain
relief. However, currently, only a class of molecules was
proven to be effective in the management of CRPS: the
bisphosphonates [80]. Bisphosphonates have potential pain
killer activity by interfering with mechanisms involved in
inflammatory and nociceptive pathways (inhibition of
macrophage activation and proinflammatory molecules,
regulation of nerve growth factor expression, and pH
modulation in the site where the pain is localized) [81, 82].
)e class of bisphosphonates comprises the following drugs:
neridronate, which significantly reduces pain and improves
the quality of life in patients with CRPS [83]; alendronate,
which is effective for treating posttraumatic CRPS of the
lower limb [84]; pamidronate, which may have positive
effects on CRPS; and clodronate, which is effective in
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patients with CRPS-I at inducing pain relief [85]. All these
bisphosphonates can be effective for CRPS in both research
and clinical practice [83, 84, 86], without serious adverse
events [87]. However, only neridronate provides clinically
significant pain relief with complete and persistent remis-
sion in most cases of CRPS. Other classes of drugs that show
contrasting results in relieving pain in CRPS patients are the
following: opioids, calcitonin, anticonvulsants and antide-
pressants, nonsteroidal anti-inflammatory drugs, cortico-
steroids, anesthetics, antihypertensives, and botulinum toxin
[88].

8. Neurological Treatments

8.1. SympatheticNerveBlock. Sympathetic blockade involves
the injection of local anesthetics along the lumbar sympa-
thetic chain for lower limbs or stellate ganglion for upper
limbs under fluoroscopic guidance. An increase in tem-
perature in the affected extremity, without a motor or
sensory block, a reduced pain, and a decreased allodynia are
considered signs of a good response [89]. However, sym-
pathetic blocks may be effective only in some patients, es-
pecially in those with mechanical allodynia with burning
pain and with temperature and color changes [90–93].
Furthermore, there are no universally accepted guidelines
for patients selection or drugs choice for regional blocks, and
the quality of published reports on the lumbar sympathetic
chain and stellate ganglion blocks is insufficient, with
contrasting outcomes, some studies report benefits for the
patients, and others show no effects and absence of con-
sistency in the medications used [94–98].

8.2. Sympathectomy. In 1930, for the first time, a patient
with CRPS was successfully treated through sympathectomy
(stellate ganglionectomy) [99]. Sympathectomy may be
chemical or surgical and may be successful in CRPS patients
with sympathetically maintained pain, which already
showed a good but transient effect from sympathetic blocks
[89]. Since 1930, other clinicians have considered the
sympathectomy as a feasible treatment for CRPS, particu-
larly when undertaken in a timely manner (within 3
months). In this case, sympathectomy has an excellent or
good outcome; otherwise, a favorable result is not guaran-
teed [100–103]. However, it was later proved to have variable
outcomes, uncertain efficacy, frequent complications
(neuralgia, hyperhidrosis, and Horner syndrome), and little
evidence for long-term effects [89, 104–107]. For CRPS
patients who show no improvement in long-standing
symptoms despite medication, interventional or surgical
therapy may be indicated [108].

Patients who respond to sympathetic nerve blocks are
eligible for surgical or chemical sympathectomy. Sympa-
thectomy can be either chemical, with the injection of
phenol or alcohol performed with the same techniques and
targets of sympathetic blocks, or surgical with an open
approach or with minimally invasive techniques like ther-
moablation, which effects might be more lasting and re-
producible [100]. Sympathectomy of the second thoracic

ganglion may be undertaken with the thoracoscopic ap-
proach, a relatively easy and safe technique that leads to
upper limb sympathetic denervation. )e second thoracic
ganglionectomy effectively interrupts the sympathetic out-
flow proximal to the alternate neural pathways [109–112].
Nerve regeneration frequently occurs after either surgical or
chemical ablation but may take longer with surgical ablation
[100]. Currently, guidelines about drugs selection are still
missing; therefore, clinicians should carefully consider po-
tential risks and benefits of these techniques before pro-
ceeding to the treatment [113]. High-quality evidence from
double-blind randomized controlled trials with placebo
controls would be needed to determine whether sympa-
thectomy is actually effective in the reduction of neuropathic
pain [108].

8.3. Spinal Cord Stimulation. )e spinal cord stimulation
(SCS) is based on the gate-control theory which proposes
that “control of pain may be achieved by selectively acti-
vating the large, rapidly conducting fibers” [114]. )is
technique activates the nonnociceptive fibers, thereby pre-
venting painful stimuli from reaching the thalamus, and is
used in patients with CRPS who have already failed con-
servative management [115].

)e SCS is an FDA-approved device made of electrode
leads (percutaneous or paddle). Both percutaneous and
paddle leads are placed at themidline in the epidural space to
stimulate the dorsal column tracts of the spinal cord [116].

SCS controls the neuropathic pain of CRPS and mod-
ulates the pain mediated by the sympathetic nervous system.
SCS may be effective for the treatment of CRPS in the
decrease of pain and the increase in the quality of life
[117, 118].

8.4. VagalNerve Stimulation. )e vagal nerve is a major part
of the autonomic nervous system that extends from the
medulla to the colon and is involved in the autonomic,
cardiovascular, respiratory, gastrointestinal, immune, and
endocrine functions [119]. )e VN is a mixed nerve con-
taining both afferent and efferent fibers [120]. Its afferent
fibers sense pressure, pain, stretch, temperature, chemicals,
osmotic pressure, and inflammation [121] and are involved
in regulating the homeostasis of the digestive tract and in the
generation of heart and respiratory rhythms [122]. )e ef-
ferent vagal fibers originate in the dorsal motor nucleus of
the VN, located in the medulla. In humans, these fibers
innervate the digestive tract, from the esophagus to the
splenic flexure [123]. )rough its afferent and efferent fibers,
the VN plays a dual role in contrasting inflammation.
Classically, vagal efferents are activated by peripheral
proinflammatory cytokines (e.g., IL-1β) [124]. )e anti-
inflammatory reflex is mediated by the cholinergic anti-
inflammatory response, in which the release of TNF-α is
inhibited via the activation of alpha-7-nicotinic acetylcho-
line receptors on macrophages [125].

In case of pain, the stimulation of the VN can be effective
in inducing antinociception. Noninvasive stimulation has
been found effective in reducing acute pain [126]. Inhibition
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of somatic pain perception has also been observed with
nonelectrical VN activation in clinical studies [127]. Since
overactive sympathetic outflow has been associated with pain,
pain may be reversed by reducing sympathetic outflow while
increasing parasympathetic outflow. Together with the anti-
inflammatory effect, autonomic modulation by vagal nerve
stimulation can help manage pain [128] via suppression of
pain neurons, as observed in animal models [129–131]. All
these studies suggest a plausible role of vagal nerve stimu-
lation in controlling and managing pain through multiple
mechanisms. )is nerve plays a pivotal role in the vagal-
nociceptive network and vagal nerve stimulation seems
promising for modulating nociception.

9. Conclusions

CRPS is frequent in individuals of 61–70 years of age with a
female to male ratio of 3 :1. Menopause, migraine, osteo-
porosis, and asthma all represent risk factors for CRPS and
in smokers the prognosis is more severe. )e pathophysi-
ological mechanisms underlying regional pain syndrome are
complex and involve both inflammatory and neurological
pathways. Several approaches are being used for the treat-
ment of this condition (pharmacological, sympathetic nerve
blockade, sympathectomy, spinal cord stimulation, and
vagal nerve stimulation) but further studies are needed. For
example, the anti-inflammatory role of vagal nerve stimu-
lation may be of particular interest and has shown great
potential for treating pain. Furthermore, a better under-
standing of the molecular bases of CRPS will be important
for the diagnosis, management, and treatment of this
condition.
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