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A B S T R A C T

Complex Regional Pain Syndrome (CRPS) has defied a clear unified pathological explanation to date. Not sur-
prisingly, treatments for the condition are limited in number, efficacy and their ability to enact a cure. Whilst
many observations have been made of physiological abnormalities, how these explain the condition and who
does and doesn’t develop CRPS remains unclear. We propose a new overarching hypothesis to explain the
condition that invokes four dynamically changing and interacting components of tissue trauma, pathological
pain processing, autonomic dysfunction (both peripheral and central) and immune dysfunction, primarily in-
volving excessive and pathological activation of dendritic cells following trauma or atrophy. We outline pa-
thophysiological changes that may initiate a cascade of events involving dendritic cells and the cholinergic anti-
inflammatory pathway resulting in the condition, and the changes that maintain the condition into its chronic
phase. This hypothesis should provide fertile ground for further investigations and development of new treat-
ments that holistically address the nature of the disorder along its developmental continuum.

Introduction

The clinical presentation of Complex Regional Pain Syndrome
(CRPS) was first clearly and eloquently described by Silas Weir Mitchell
in 1872. Many observations have been made on CRPS yet it defies
complete understanding. Its variable presentations at onset and its
protean presentation over time have made explanation difficult.
Progress has been made in codifying the diagnostic criteria [1], which
continue to be refined [2–5], however, many of the current hypotheses
for explaining the condition are more a description of associated find-
ings for which causality has not clearly been established. No single
explanation has adequately explained the condition and this has led to
authors even denying its existence [6–8]. The current diagnostic criteria
include regional pain that is disproportionate to the initial trauma, skin
colour and temperature changes, edema, vasomotor and sudomotor
changes, motor dysfunction and trophic changes.

Any model for the condition should ideally explain the following:

1. Typically, only 0.5–2% of injury/trauma patients develop CRPS [9].
2. Some patients with CRPS have no history of trauma [10].
3. CRPS can have protean presentations, with each patient displaying

different symptoms and signs such as warm or cold limb, oedema,
allodynia, hyperalgesia, abnormal sweating and skin and nail tissue

changes [11].
4. CRPS is almost universally restricted to the limb (upper or lower)

and, often with chronicity, the symptoms (especially pain) progress
proximally up the limb, often to the shoulder/hip but not beyond
[12].

5. Whilst appearing to be a neuropathic pain condition, CRPS is mostly
unresponsive to standard neuropathic pain treatments [13].

6. Florid dystonia can be a feature of CRPS in a subset of patients and is
often treatment unresponsive [14].

7. The peripheral signs of CRPS mostly fade and disappear in the
chronic phase of the condition, although the pain mostly remains
[15].

The rat tibia fracture model of CRPS developed by Wade Kingery
and colleagues has yielded tantalising insights into keratinocyte acti-
vation, spinal cord transcriptional changes, autoimmunity development
and acute versus chronic changes [16–22], and we believe reframing
CRPS into a dynamic multicomponent disease best explains the condi-
tion. We present a four-component model of tissue trauma, pathological
pain processing, autonomic dysregulation and immune dysfunction to
explain the condition and its cardinal features (Fig. 1). These ab-
normalities interact and reinforce each other to produce the chronic
phase of the condition.
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It is the immune component of our model that has been least clar-
ified to date. We propose that a class of immunosurveillance cells
known as dendritic cells are the primary drivers of immune dysfunction
[23,24]. Dendritic cells reside predominantly in the skin and sub-
cutaneous tissue. Following antigen-capture, dendritic cells migrate to
the draining regional lymph nodes where they present antigen to T-cells
and initiate an adaptive immune response [24]. Furthermore, dendritic
cell activation and migration into the systemic circulation has effects on
both peripheral and central neurogenic signalling [25]. These processes
and further downstream effects of dendritic cell activation that may
lead to the generation of neuropathic in CRPS are discussed in detail in
the second half of this article.

Components of the model

The reader should note that what is being presented here is a hy-
pothesis (which is constructed before any applicable research has been
done) and not a theory (which is a construct that explains the ob-
servable data generated in a series of investigations or experiments).
Furthermore, we are not suggesting that each and every factor that is
discussed within this article has the ability to activate, exacerbate or
maintain the disease in each and every CRPS patient, rather, that these
are examples, whether validated by prior investigations in subsets of
CRPS patients, or supported by animal models, that would each provide
some level of support for one (or more) of the four components in our
hypothesis and model. In any individual, these four components can
vary in degree in terms of homeostatic disturbance and relative time
course of activation.

Component 1: tissue trauma

Most cases of CRPS can be linked to some form of trauma. Tissue
trauma may include bone fractures, soft tissue injuries, chemical or
thermal burns, and may be complicated by factors such as limb im-
mobilisation or disuse [26], tissue hypoxia [27], neurogenic in-
flammation [28,29], stress [30], and so forth. Tissue trauma brings
about a well understood course of inflammation, peripheral nociceptor
activation and upregulated neural processing. This is later followed by
an anti-inflammatory response that dampens the aforementioned
changes and restores the tissue and organism to homeostasis. Under
certain circumstances, however, protective mechanisms can become

overwhelmed by various compounding, initiating factors, leading to
deleterious and profound downstream effects.

Two major activators of immune cells, particularly dendritic cells,
involved in the genesis of neuropathic pain include damage associated
molecular products (DAMPs), which are endogenous products released
after trauma, surgery or sepsis that drive an inflammatory response,
such as heme, extracellular hemoglobin, interleukins (i.e. IL-1α, IL-33),
heat shock proteins, and high mobility group box protein HMGB1)
[31–33], and pathogen associated molecular products (PAMPs), which
are exogenous molecules released from infiltrating microorganisms
[34–41].

Tissue hypoxia has been identified as a dendritic cell activator
[42,43] and has direct relevance to CRPS, with multiple studies in-
dicating impaired tissue oxygenation in the affected limb of CRPS pa-
tients [27,44–46]. In addition, sympathetic nervous system hyper-
activity and whole-body stress response producing high circulating
catecholamine levels have also been implicated in the activation or
modulation of dendritic cells [47–50].

The component of tissue trauma directly contributing to CRPS
symptoms and signs will wane over time but may be complicated by
direct injury to peripheral nerves (in the case of CRPS-II), which will
prolong neuropathic pain presentation.

Component 2: pathological pain processing

Pain pathogenesis has been well described by Gold and Gebhart
[51]. Pathological pain processing is associated with symptoms/signs of
allodynia and hyperalgesia and can consist of excessive activation of the
peripheral nerve(s), dorsal root ganglion (DRG), dorsal horn of the
spinal cord, thalamus, cortex and basal ganglia. Typically, such activity
starts peripherally, with activation of more proximal structures occur-
ring over time, however that time course is variable and central nervous
system (CNS) changes can occur quickly [52]. Due to the interactions
between the autonomic and immune systems with the pain processing
system [25,53,54], disturbances in their function can perpetuate ab-
normal pain processing and produce a state of chronic neuropathic pain
[55,56].

Peripheral nerve involvement (i.e. nerve injury, degeneration) can
be profound in CRPS [57,58]. An important consequence of nerve in-
volvement is upregulation of microglia in the spinal cord, leading to a
state of gliosis, which contributes to central sensitisation and neuro-
pathic pain [59,60]. The first documentation of gliosis in CRPS was in a
case report of autopsy findings in the spinal cord of a chronic case of
CRPS (Fig. 2) [61].

There is also evidence of neuroinflammation and altered resting
functional connectivity of the brain in CRPS [62]. For example, basal
ganglia, whilst best known for their role in coordinating motor func-
tion, are involved in nociception and CRPS [14,63,64]. An imaging
study of the brain of CRPS patients has shown neuroinflammation of
basal ganglia, which was attributed to microglial activation, and found
a significant correlation between the inflammatory score of the caudate
nucleus and pain score as well as the affective dimensions of pain [65].
Basal ganglia outputs to the subthalamic nuclei, thalamus and the
spinal cord have also been implicated in CRPS [14]. The dystonia and
proprioceptive deficits that are sometimes seen in CRPS have been best
explained by dysfunction in the basal ganglia and the basal-thalamic-
frontal cortex circuit [66–69]. Additionally, we hypothesise that muscle
disuse behaviour, casting or unloading produces both distal peripheral
axon degeneration and altered motor cortical maps, with subsequent
alteration in basal ganglia output to motor efferents to the spinal cord,
and to efferents to the subthalamic nuclei, with subsequent reductions
in motor function and “neglect-like” limb behaviour. For a compre-
hensive review on this subject, we refer the reader to a recent pub-
lication by Azqueta-Gavaldon et al. [14].

One common mechanism underlying this aberrant neural activation
is the dendritic cell. Activated dendritic cells interact with glial cells on

Fig. 1. The proposed four component model of CRPS depicted as a time course
of homeostatic disturbances: tissue trauma (red line), pathological pain pro-
cessing (blue line), autonomic dysregulation (green line) and immune dys-
function (orange line). Note: In any individual, these four components can vary
in degree in terms of homeostatic disturbance and relative time course of ac-
tivation.
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the local peripheral nerve, the DRG, the spinal cord and the cerebral
cortex to produce glial cell activation and thus pathoanatomical
changes in neural function leading to hyperalgesia and allodynia
[70–72]. Dendritic cell interaction with the spinal DRG produces cen-
tral sensitisation and regionally limited neuropathic pain [56,73,74].
Activated dendritic cells migrate systemically and intrathecally through
pathological access to the blood brain barrier at DRG level to affect
cortical function and, in particular, basal ganglia function [74–78].
These downstream effects are further discussed later.

Component 3: autonomic dysregulation

The autonomic nervous system is one of the primary homeostatic
mechanisms of the body, maintaining organism integrity through a
dynamic balancing of sympathetic and parasympathetic activity. Its
involvement in the pathophysiology of CRPS has been well researched
[58,79,80]. The clinical signs of sympathetic dysfunction in CRPS in-
clude distal limb sweating, altered temperature (hot/cold) of the limb,
and altered skin color and oedema. Over time these signs typically fade
as the disease moves into a more advanced phase dominated by glial
and cortical changes [52,81].

Fig. 2. Microglial cell activation in CRPS. Immunohistochemistry for CD-68. Reproduced from Del Valle et al. [61] with permission from the publisher.
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The vagus nerve is one of the major controllers of autonomic bal-
ance and is known to mediate anti-inflammatory pathways via acet-
ylcholine – the “cholinergic anti-inflammatory pathway” [82–85]. “The
inflammatory reflex” proposed by Tracey and colleagues describes in-
hibition of pro-inflammatory cytokine release (i.e. TNFα, IL-1, IL-18)
from tissue macrophages and monocyte-derived dendritic cells via
acetylcholine binding to the α7 subunit of the nicotinic acetylcholine
receptor (α7nAChR) [82,86,87]. The anti-inflammatory action of the
vagus nerve extends to the spleen via acetylcholine activation of splenic
neurons, which release norepinephrine and stimulate acetylcholine-
producing T-cells, which inhibits splenic pro-inflammatory cytokine
release [88,89]. In our model, we focus on the implications of the in-
flammatory reflex in the lymph node as this results in a regional lymph
distribution unique to the CRPS limb, whereas spleen, liver and thymus
involvement may have a lesser role in such a regionally restricted
condition as CRPS. Support for lymph node involvement comes from
work by Wülfing and Günther [90], who showed that lymph nodes are
intensely innervated by the autonomic nervous system of which forms a
neural meshwork that encapsulates dendritic cells and macrophages
and modulates their function (“neurally hard-wired”).

Other research has shown that acetylcholine activity determines the
balance of self-tissue recognition versus antigen detection response of
dendritic and other immune cells [91,92]. Salamone and colleagues
[91] showed that human dendritic cells express multiple acetylcholine
receptors and acetylcholine synthesizing enzymes, and that acetylcho-
line modulation of dendritic cells depends on their maturation state and
the receptor involved; In immature dendritic cells, antigen processing
and pro-inflammatory cytokine release is stimulated by acetylcholine,
whereas the opposite occurs in mature dendritic cells. Similarly, the
sympathetic nervous system via norepinephrine release modulates
dendritic cell activity depending on the receptor involved – α1-adre-
noreceptors (α1-ARs) are stimulator while ß- adrenoreceptors (ß-ARs)
are inhibitory in terms of dendritic cell migration and inflammatory
cytokine release [48,49]. Excess sympathetic activity and/or loss of
vagal efferent activity will alter this balance and lead to activation of
dendritic cells. This has deleterious effects on immune function and
pain processing.

An excess of sympathetic activity relative to parasympathetic ac-
tivity in CRPS has been observed using heart rate variability analysis
[93–96]. This imbalance is likely to be both peripheral and central in
origin and can involve immune dysfunction. This may cause autoanti-
body production to autonomic neurons and lead to autonomic dis-
turbances, as has been observed in subsets of CRPS patients [97]. Thus,
no system acts in isolation from the other. The relative sympathetic
overactivity likely explains the largely positive response traditionally
associated with use of sympathetic nerve blocks as a treatment for CRPS
of less than 12months duration [98–100]. The associated interplay of
tissue damage, abnormal pain processing, spinal cord/central sensiti-
sation and immune dysfunction may explain the significant negative
response rate of this therapy and its inability to alter symptoms in es-
tablished chronic cases of CRPS [58].

We hypothesise that autonomic imbalance and disturbance to the
cholinergic anti-inflammatory pathway is one of the four major pa-
thophysiological elements contributing to CRPS. Support for this has
been reviewed by Walker and Drummond [101], with more recent
support coming from animal models [102]. Note should be made of the
high rates of smoking in CRPS [103,104], which may be an attempt on
the part of the patient to initially activate this pathway, albeit at the
expense of subsequently altering cortical functional connectivity in the
direction of nociceptive transmission facilitation [105–107].

Component 4: immune dysfunction

We hypothesise that the primary immune activator in CRPS is the
dendritic cell (Fig. 3). The direct evidence for this was first shown in
1998 in a histopathology study in which abnormal levels of dendritic

cells in the epidermis (Langerhans cells) were observed in the skin
biopsies of CRPS patients with severe pain, but not in non-CRPS nerve
injury/repair patients (Fig. 4) [108]. The significance of this was not
appreciated at the time.

In essence, our hypothesis predicates activation and maturation of
dendritic cells by specific initiator mechanisms such as those afore-
mentioned (Fig. 5). The next section provides a comprehensive over-
view of dendritic cell activation and migration and discusses how their
overactivity may contribute to the generation of neuropathic pain in
CRPS.

Dendritic cells in detail

Dendritic cells are a class of antigen presenting cells tasked with
performing immunosurveillance and coordination of the host response
[109]. They are the most effective antigen presenting cells compared to
macrophages and B-cells [92]. Dendritic cell precursors originate from
hematopoietic stem cells in bone marrow via an intermediate pro-
genitor (myeloid or lymphoid); these include common dendritic cell
precursors, plasmacytoid dendritic cell precursors and monocytes
[110]. Dendritic cell precursors, monocyte-derived dendritic cells and
plasmacytoid dendritic cells circulate in the bloodstream and migrate to
peripheral tissue under inflammatory conditions [24]. Conventional
dendritic cells typically populate non-lymphoid tissue while plasma-
cytoid dendritic cells predominantly reside in lymphoid tissue and
lymph nodes [111].

Dermal dendritic cells may arise from common dendritic cell pre-
cursors or circulating monocytes [110]. Capture of an antigen and/or
activation by noxious signals (i.e. during trauma or other inflammatory
conditions), such as DAMPS, PAMPS, interleukins (i.e. IL-1β, IL-6, IL-
18), TNFα and interferons (i.e. IFNα and IFNγ), promotes

Fig. 3. High-resolution 3D rendition of a dendritic cell (immature) by Bliss and
Subramaniam (related reference: [182]). Image from National Institutes of
Health (NIH) [Public domain], via Wikimedia Commons.

Fig. 4. Immunostaining of skin biopsy from a patient with CRPS showing an
abundance of Langerhans cells in the epidermis. Figure reproduced from Calder
et al. [108] with permission from the publisher.

M. Russo et al. Medical Hypotheses 119 (2018) 41–53

44



accumulation, activation and maturation of resident dendritic cells,
infiltrating dendritic cells and precursors [23,24,112]. Activated, ma-
ture dendritic cells migrate to draining lymph nodes where they cross-
present antigens via major histocompatibility complex (MHC) mole-
cules to T-helper cells, induce proliferation of T-cells, B-cells and lymph
resident dendritic cells, and release pro-inflammatory cytokines to drive
an adaptive immune response [24,112]. This inflammatory cascade
results in a regional response with activation and colony expansion of
monocytes, dendritic cells and osteoclasts within the blood stream and
bone marrow [113,114].

Langerhans cells are mature epidermis resident dendritic cells. As a

result of a noxious event to the skin surface, such as trauma, Langerhans
cells and keratinocytes produce IL-1β and TNFα respectively, inducing
activation and mobilisation of Langerhans cells, which then migrate to
the dermis and ultimately to the draining lymph node where they also
prime T-cells to initiate an immune response [115,116].

The idea that dendritic cells belong to a “neuro-immuno-cutaneous
system” and may be important in the pathophysiology of inflammatory
diseases came about in the late 1990’s following observations of den-
dritic cells associating with epithelial nerve fibers [54,117]. This ex-
panded into an understanding of an axonal plexus in the epithelium
intimately involved with dendritic cells that express multiple neuronal

Fig. 5. The immune response is driven by the CNS.
(a) Trauma results in nociception with activation of
mechanical receptors at the site of trauma. This is
relayed by afferent nerve fibres (A delta and C fibres)
to the DRG and to the dorsal horn of the spinal cord
in a segmental manner. The pain signals then ascend
to the brain for further processing. (b) Pathological
pain processing at the cortical and subcortical regions
of the brain occurs in CRPS. (c) Reconciliation of pain
processing with basal ganglia outputs to autonomic,
endocrine and motor function. (d) Trauma and
atrophy release DAMPs, which are captured by den-
dritic cells, which then migrate to the regional lymph
node. A small number of dendritic cells will pass
through the thoracic duct into the bloodstream. (e)
Normally, dendritic cells within lymph nodes are
held in a state of immune tolerance by innervation of
the autonomic nervous system, particularly the
parasympathetic nervous system (PSNS) which
modulates immune cell function via the cholinergic
anti-inflammatory pathway. Autonomic imbalance
(i.e. due to altered basal ganglia function and/or in-
creased circulating catecholamines and/or reduced
parasympathetic (PSNS)/vagal acetylcholine release)
results in a transition from immune tolerance to an
adaptive immune response and immune cascade, in
which T-cells and B-cells are activated and dendritic
cells and macrophages release inflammatory cyto-
kines (i.e. TNFα, IL-1, IL-18). (f) This initiates a re-
gional immune response with activation of osteo-
clasts and monocytes and colony expansion of
immune cells that results in further secondary injury.
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markers and neuropeptide receptors [25,53,118–120]. Another key
finding was that IL-6 (and other neurotrophins) produced by Langer-
hans cells are able to stimulate nerve differentiation [121].

Dendritic cells and neuropathic pain

An in depth review of the involvement of the immune system in the
generation of neuropathic pain has been presented by Calvo, Dawes and
Bennet [56]. We discuss how dendritic cell activation and recruitment
may lead to neuropathic pain.

Various myeloid cells, including monocytes, dendritic cells and
neutrophils in the periphery, and microglia in the CNS express “trig-
gering receptors expressed by myeloid cells” 1 and 2 (TREM-1 and
TREM-2) and a transmembrane adaptor protein “DNAX-activating
protein 12 kDa” (DAP12) [122–124]. TREM-1 is a known amplifier of
inflammation; activation and signalling via DAP12 leads to the pro-
duction of pro-inflammatory cytokines such as IL-1β, IL-2, IL-6, IL-8,
TNFα, monocyte chemoattractant protein 1 (MCP1) / chemokine (C–C
motif) ligand 2 (CCL2), and decreased expression of anti-inflammatory
cytokines such as IL-10 [123]. It is of interest that periodontitis (which
is associated with an increased oral load of both commensal and pa-
thogenic bacteria) is a potent activator of the dendritic cell TREM-1
pathway, leading to a more florid inflammatory cytokine release [125].
TREM-2 has more of a myeloid cell regulatory function. For example,
TREM-2 signalling via DAP12 in dendritic cells leads to upregulation of
CC chemokine receptor 7 (CCR7), partial dendritic cell maturation and
dendritic cell survival, leading to systemic dendritic cell activation
[124,126]. TREM-2/DAP12 signalling has also been implicated in in-
flammatory microglial activation and neuroinflammation [127,128].
Importantly, it has been shown that TREM-2/DAP12 signalling in mi-
croglia in the dorsal horn after spinal nerve injury leads to in-
flammatory cytokine release and the generation and exacerbation of
neuropathic pain [127,129].

Recent studies have highlighted the balance between TREM-1,
TREM-2 and DAP12 expression in the CNS as an important factor in in
the development of neuroinflammation and neuropathic pain [128]. In
essence, TREM-DAP12 activation and signalling can be seen as produ-
cing a widespread inflammatory response, priming the milieu for neu-
ropathic pain activation [130]. We hypothesise that this is part of the
mechanism whereby dendritic cell and microglia activation can cause
neuropathic pain in CRPS cases.

Dendritic cell migration

Maturation and migration of dendritic cells are tightly linked pro-
cesses (Fig. 6). Dendritic cell migration appears to be dependent on
maturation, which is predominantly initiated by antigen capture,
DAMPs, stress (circulating catecholamines) or inflammatory signals/
cytokines [112]. TNF-α and IL-1β are said to be important initiators of
migration in Langerhans cells, specifically by modulation of cell adhe-
sion protein expression, namely E-cadherin, thus mobilising and
priming the cells for migration [131–134].

Matrix metalloproteinases (MMPs) are crucial drivers of skin den-
dritic cell migration to lymph nodes as they “clear a path” by re-
modelling the extracellular matrix [135]. A detailed series of experi-
ments in vitro (cultured mouse and human skin explants) and in vivo
(mouse ear) have been conducted by Ratzinger et al. to characterise
MMP driven dendritic cell migration. In cultured tissue, treatment with
a non-specific MMP inhibitor significantly reduced dermal dendritic
cell and epidermal Langerhans cell migration but did not prevent their
maturation [136]. A reduction in the number of migrating dendritic
cells was observed in the lymphatic vessels. When cultured without the
inhibitor, spontaneous dermal and epidermal dendritic cell migration
was observed. In vivo experimentation showed that injection of in-
flammatory cytokines (i.e. TNFα) significantly boosted Langerhans cell
migration and activation, while co-injection with an MMP inhibitor

completely blocked migration, though cells were still activated. MMP-9
and MMP-2 have been identified as mediators of Langerhans cell pas-
sage through the basement membrane, and are partially involved in
mediating dendritic cell migration through the dermis [136–139].

Tissue inhibitors of metalloproteinases (TIMPs), especially TIMP-1
and TIMP-2, are endogenous regulators of MMP function [140]. Im-
balance in the MMP/TIMP ratio may lead to increased dendritic cell
migration, excessive tissue remodelling/degradation and upregulation
of the immune response, and has been associated with numerous
chronic inflammatory diseases [135]. For example, P. gingivalis, a pa-
thogen associated with chronic periodontitis, has been found to sti-
mulate dendritic cells and induce a high MMP-9/TIMP-1 ratio in vitro
[141].

Lymph node response

It has been well documented in the rat tibial bone fracture model of
CRPS that after trauma there is an increase in the weight and total cell
number of the regional draining lymph nodes, including a high con-
centration of migrating dendritic cells [142]. More recent work has
shown that the glucocorticoid-induced TNF receptor-related protein
(GITR) and its ligand (GITRL) promote epidermal inflammatory cyto-
kine production by keratinocytes and epidermal dendritic cells, which
results in migration of cutaneous dendritic cells to the draining lymph
nodes [143]. In a partial sciatic nerve ligation model, this resulted in
infiltrating macrophages and T-cells, with an increase in GITR on T-
cells and an increase in GITRL on macrophages [144]. Blocking the
GITR-GITRL pathway with a neutralising antibody blocked the devel-
opment of neuropathic pain. Taken together, these findings indicate
that after trauma or nerve injury there is activation and migration of
dendritic cells to the regional lymph nodes which are involved in the
production of neuropathic pain.

The lymph node response is under the control of the autonomic
nervous system. Under normal conditions, dendritic cells are held in a
state of immune tolerance by parasympathetic innervation of lymphoid
tissue and acetylcholine release - the “cholinergic anti-inflammatory
pathway” [91,92], and by sympathetic innervation and norepinephrine
release [48,49]. In CRPS, loss of tolerance and maintenance of dendritic
cells due to autonomic imbalance, which may be caused by altered CNS
output and/or whole-body stress response causing an increase in ca-
techolamines (norepinephrine), leads to initiation of an adaptive im-
mune response and an inflammatory cascade [78,92,145,146]. This
results in a regional response with the activation of keratinocytes (hy-
perplasia), osteoclasts (bone resorption), and monocytes, with further
colony expansion of dendritic cells within the bloodstream and bone
marrow [147]. The abundant circulating dendritic cells migrate back to
the target tissue and potentiate the cascade. Adding to this is the release
of neuropeptides from sensory neurons (i.e. Aδ and C fibers), which
adds to the immune response and neurogenic inflammation [148].
Activated dendritic cells also promote antibody production, leading to
further tissue injury [149]. The net effect is worsening nociception and
nerve injury with neuropathic pain, autonomic instability and vascular
changes [146,147].

We hypothesise that this explains the regional truncation of pain in
CRPS to the limb and its persistence. Fig. 7 illustrates the lymph node
response and downstream effects in the context of acute and subacute
CRPS.

Downstream effects

There are several downstream effects of dendritic cell activation/
migration that we propose may be responsible for the maintenance of
the CRPS pain in any given individual. These changes are likely to be
differentially expressed in individual patients. These are briefly dis-
cussed below and graphically summarised in Fig. 8.
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Endothelial dysfunction

Endothelial dysfunction in CRPS has been extensively investigated
and reviewed [150]. Impairments in vascular regulation systems
leading to imbalance between vasoconstriction and vasodilation have
also been observed in CRPS-affected limbs compared to unaffected
limbs [151]. We hypothesise that dendritic cell activation is the pri-
mary mechanism of the endothelial dysfunction seen in CRPS.

Microglial activation

Whilst dendritic cells are not usually present within the CNS, high
concentrations are found in close proximity within the meninges,
choroid plexus and perivascular space, and they may infiltrate the CNS
under inflammatory conditions [152]. It has been shown that dendritic
cell adhesion to cerebral endothelial cells depends on dendritic cell
maturation and activation of the endothelium, and that this is regulated
by specific receptor-ligand interactions, thus allowing systemic den-
dritic cells to penetrate the blood brain barrier [76]. Within the CNS,
dendritic cells are intimately intertwined with microglia and astrocytes
[77]. Research has shown that during CNS inflammation, microglia
may differentiate into brain dendritic cells, or acquire a dendritic cell
phenotype, and it has been indicated that mature inflammatory den-
dritic cells remain in the CNS even after the inflammation process has
been terminated [153]. We therefore hypothesise that dendritic cells
are one of the primary mediators of neuroinflammation in the CNS in
CRPS patients.

Spinal cord central sensitisation

Sensitisation of the DRG and a role for epigenetic modification of
DRG neurons in CRPS has been reviewed [154,155]. Briefly, studies in
rodent nerve injury/neuropathic pain models have shown that fol-
lowing nerve injury, T-cells, monocytes, macrophages and migrating
dendritic cells infiltrate the site of injury/injured nerve and the DRG,
while activation of microglia and astrocytes is seen in the spinal cord
[70–72]. Nerve injury promotes increased expression of BDNF, which
data suggests may activate dendritic cells [156], and this has been
implicated in the development of neuropathic pain [157]. Activation of
TRPV1 at the DRG leads to maturation and activation of dendritic cells
and the dual transmission of pain and inflammatory signals. This

demonstrates a commonality between neural and immune mechanisms
and functional pathways from the peripheral to the central nervous
system [158].

Basal ganglia and cortex activation

It is known that local inflammation may activate brain regions via
the recruitment of peripheral immune cells to the CNS and the gen-
eration of an inflammatory cytokine cascade [62,78]. Basal ganglia
function (particularly dopamine function) has been identified as a pri-
mary target of these inflammatory cytokines, particularly IFNα
[159,160]. IFNα, which is produced by microglia, astrocytes and
plasmacytoid dendritic cells during immune activation, is a potent in-
ducer of various other inflammatory cytokines, namely TNFα, IL-1, IL-6
and MCP-1, which further potentiate neuroinflammation [78]. This
leads to further recruitment of monocytes to the brain which may dif-
ferentiate into dendritic cells and contribute to this inflammatory cas-
cade [161].

Autoimmunity

Extensive research has provided evidence for autoimmunity against
the autonomic nervous system in the pathophysiology of subsets of
CRPS patients. Pathogenic autoantibodies against neuronal structures,
particularly autonomic neurons, have been discovered in CRPS patients,
and the β2-AR and the muscarinic acetylcholine receptor M2 have been
identified as autoantigens of these autoantibodies [97,162]. In a mouse
IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS
patients induced key clinical indicators of the human disease, namely
swelling and mechanical hyperalgesia, which supports the auto-
immunity concept [163]. Antibodies to the α1a-AR have also been
implicated in an autoimmunity mechanism in chronic CRPS [164].
Further supportive of an autoimmunity component in CRPS involving
dendritic cells is an investigation in which IgG immune complexes were
shown to stimulate migration of dendritic cells from peripheral tissue to
draining lymph nodes in vitro [165]. The role dendritic cells play in
autoimmunity is yet to be comprehensively explored, although it is
known that they are capable of facilitating autoimmunity via various
mechanisms, such as by priming autoreactive T-cells and promoting B-
cell autoreactive responses [149,166].

Fig. 6. An illustrated overview of dendritic cell maturation and migration. Figure reproduced from Li et al. [112] with permission from the publisher. HSC:
haematopoietic stem cell; iDC: immature dendritic cell; mDC: mature dendritic cell; ECM: extracellular matrix; LNs: lymph nodes.
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Evidence against the hypothesis

The hypothesis has a number of disparate strands of supporting
evidence, but currently lacks a detailed immunological signature ex-
amination across serum, cerebrospinal fluid, dorsal root ganglion ly-
sate, skin biopsy and skin blister fluid analysis. This would be the
comprehensive investigation to show support or refutation of the den-
dritic cell activation hypothesis.

One study by Osborne and colleagues observed no significant dif-
ference in overall immune cell population or mast cell density in skin
punch biopsies between chronic CRPS-affected and non-affected limbs
[167]. There were, however, significantly less Langerhans cells in the
epidermis of CRPS-affected limbs compared to non-affected limbs, and

no significant difference when compared to healthy controls or non-
CRPS pain controls. This particular finding in their experimental set up
is not supportive of the hypothesis presented here, but analyses one
particular aspect of possible immune activation. The results of this
study were in contrast to the Calder study, in which CRPS-affected
upper limbs (as opposed to predominantly lower limb CRPS patients in
the Osborne study) displayed a higher density of Langerhans cells than
non-CRPS repaired nerve injury limbs [108].

Our clinical research group is currently collaborating with expert
basic science researchers to investigate the immune signature present in
the serum of CRPS patients and control subjects utilising a mass cyto-
metry approach. This method allows for up to 40 immunological mar-
kers, including those for specific dendritic cell populations, to be

Fig. 7. The immune response in acute and subacute CRPS. Antigens and/or DAMPs released due to tissue trauma or atrophy are engulfed by and/or activate dendritic
cells, which then migrate to the regional lymph node. A loss of immune tolerance due to altered parasympathetic nervous system (PSNS) control (i.e. lack of
acetylcholine and hence loss of suppression via α7nAChR) leads to activation of dendritic cells and antigen presentation to T-helper (Th) cells via MHC class II
molecules. This results in an adaptive immune response and inflammatory cascade, with release of inflammatory cytokines (i.e. TNFα, IL-1, IL-18) and activation of
T-cells and B-cells with production of antibodies. This inflammatory response activates cells within the regional lymphatic system and results in colony expansion of
monocytes, circulating dendritic cells, migrating Langerhans cells, keratinocytes and osteoclasts, as well as release of neuropeptides from sensory neurons.
Downstream effects include oedema, vascular and trophic changes such as bone resorption. Dendritic cells may also migrate through the blood brain barrier (BBB)
and have pathological effects on cortical function, particularly basal ganglia.
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analysed, and, along with quantification of serum cytokine levels,
would represent a comprehensive analysis of the serum immune status.
Further work, however, would need to be performed to analyse the
other tissue sites referred to above.

Critically, there is likely to be a difference between the immune
signature in early CRPS (presumptive strong signal) and the signature in
well-established chronic cases of many years duration in which the
immune signature may be muted by immune activation exhaustion, and
where centrally driven cortical changes may predominate [167].

Therapeutic implications

Typically, several treatments are added to baseline physical therapy
in CRPS management. As each individual treatment fails, another is
added to the process. Historically, response rates are poor. Considering
the model presented here, a multitargeted approach could be con-
sidered. Inhibition of dendritic cell activation, maturation and migra-
tion may be a new area to explore in CRPS research. We would counsel
against specific monoclonal antibodies as being a likely useful approach
as their target is too specific to likely work. Instead, we believe that

Fig. 8. Activation of tissue dendritic cells by five major initiating factors (top) and the major secondary effects implicated in the development of CRPS according to
our model (bottom). α1-AR: alpha-1 adrenergic receptor; α7nAChR: alpha-7 nicotinic acetylcholine receptor; ACh: acetylcholine; ARs: adrenergic receptors; BBB:
blood brain barrier; BG: basal ganglia; CNS: central nervous system; DAP12: DNAX-activating protein 12 kDa; DRG: dorsal root ganglion; Hb: hemoglobin; HMGB1:
high mobility group box protein 1; HSP: heat shock protein; iDC: immature dendritic cell; IFNα: interferon alpha; LN: lymph node; M1: primary motor cortex; NE:
norepinephrine; NN: nociceptive neuron; pDC: plasmacytoid dendritic cell; TLR: toll-like receptor; TREM-1/2: triggering receptor expressed on myeloid cells 1 or 2;
TRPV1: transient receptor potential cation channel subfamily V member 1.
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immunomodulatory drugs with wide and varied mechanisms of action
that inhibit dendritic cell function are more likely to be found effective
for this condition.

Several effective treatments for CRPS can now be better understood
as functioning through their immune modulation of the condition.
Zoledronic acid is actually a potent inhibitor of dendritic cell function
[168–171] and this action may be more important than its osteoclast
action [172]. Oral corticosteroids also inhibit dendritic cell function
[173–175]. Their role may be time sensitive during the earlier phase of
CRPS. Other means of arresting dendritic cell expansion could now be
considered.

Inhibition of systemic inflammatory dendritic cell activity may be
addressed by restoring or enhancing the cholinergic anti-inflammatory
pathway. Vagus nerve stimulation is a well-studied method of achieving
this and has been applied to other inflammatory diseases [176–178].
Implanted vagus nerve stimulators are approved for seizure and head-
ache disorders and could be trialled in CRPS patients. Selective agonism
of α7nAChR to inhibit pro-inflammatory cytokine release from mono-
cyte-derived dendritic cells and tissue macrophages in lymph tissue also
represents a potential therapeutic avenue to pursue [179–181].

Conclusion

We propose that the pathophysiology of CRPS may be better un-
derstood as four components of altered function in terms of tissue
trauma, abnormal pain processing, autonomic imbalance and immune
system alteration, with a cascade of dendritic cell activation, recruit-
ment, maturation and migration initially to the draining lymph nodes
and subsequently to the DRG and cortical networks where basal ganglia
output is altered. Also on an immune basis, there may be partial loss of
recognition of self as regards dendritic cell function and this can include
autoantibody production. The condition may best be considered as an
immune-neurological disorder, with a combination of adaptive immune
response and pathological pain processing. Whilst the multiple activa-
tion pathways in this condition have precluded a successful single
“magic bullet” approach, this new understanding might allow a mul-
timodal treatment strategy targeting specific activation points to better
restore homeostasis and resolution of the condition. This hypothesis
will only be useful to the extent that specific experiments validate
components of the model and provide robust experimental evidence to
underpin this approach, for example, investigations of dendritic cell
subpopulations and activation levels in acute CRPS presentations. We
encourage the research community to consider testing this hypothesis
in animal and human studies.
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